The Study Manager_15_优化技术

您可以选择以下两种算法之一来解决问题。以下是这些算法需要设置的具体属性说明:

NLPQL

当选择NLPQL算法时,将显示以下属性配置项。
image.png|600

输出模式

此属性决定算法运行时显示的信息详细程度,提供以下三个级别:

  • 无输出
  • 诊断模式(Diagnostic)
  • 详细模式(Verbose)

相对梯度步长

NLPQL算法需通过Simcenter Amesim计算目标函数和约束在设计空间所有方向上的梯度(每个优化输入参数即代表一个方向)。梯度计算采用有限差分法,举例说明:
假设目标函数为 f(x,y),其中x、y为输入参数。
梯度值为:
grad ⁡ ( f ) ‾ ( x 0 , y 0 ) = ( ∂ f ∂ f ( x 4 , y 0 ) d f ∂ y ( x 1 , y 0 ) ) = ( f ( x 0 , y 0 ) − f ( x 0 + δ x 0 , y b ) δ x 0 f ( x 0 , y 0 ) − f ( x 0 , y 0 + δ y 0 ) δ y 0 ) \overline{\operatorname{grad}(f)}\left(x_0, y_0\right)=\binom{\frac{\partial f}{\partial f}\left(x_4, y_0\right)}{\frac{d f}{\partial y}\left(x_1, y_0\right)}=\binom{\frac{f\left(x_0, y_0\right)-f\left(x_0+\delta x_0, y_{\mathrm{b}}\right)}{\delta x_0}}{\frac{f\left(x_0, y_0\right)-f\left(x_0, y_0+\delta y_0\right)}{\delta y_0}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值