LSTM(长短时记忆网络)多变量时间序列回归预测,超前24步程序!

使用LSTM(长短时记忆网络)进行多变量时间序列回归预测,特别是超前24个时间步,需要准备适当的数据集并建立合适的模型。以下是一般步骤:

数据准备:收集多个时间序列变量的历史数据,包括输入和目标变量。确保数据已经进行了清洗和预处理。将数据划分为训练集和测试集。通常,你会在训练集上训练模型,然后在测试集上进行验证。

数据标准化:标准化数据以确保所有输入和输出变量都在相同的尺度上。你可以使用标准差标准化(z-score标准化)或最小-最大标准化。

创建序列:将数据集转换成适合LSTM的时间序列数据。你需要为每个样本创建具有时间步长的输入序列和超前24个时间步的目标序列。这可以通过滑动窗口法来实现。

建立LSTM模型:创建一个LSTM神经网络模型,包括输入层、LSTM层、输出层等。在LSTM层中,可以指定LSTM单元的数量,层数以及其他超参数。为了预测超前24个时间步,输出层应该具有24个神经元。

模型训练:使用训练集来训练LSTM模型。你可以选择使用均方误差(MSE)或其他适当的损失函数来度量预测误差。使用适当的优化算法,如Adam或SGD。

模型验证:使用测试集来验证模型的性能。计算预测值与实际值之间的误差,如MSE、MAE等。

绘制预测结果,以便可视化模型的性能。

调参:如果模型性能不满意,可以尝试调整LSTM层的数量、每层的神经元数量、学习率等超参数。

预测:当模型已经训练好且性能满意时,你可以使用模型来进行未来24个时间步的预测。

程序结果:

部分程序:

%% 清除内存、清除屏幕
clc
clear

%% 导入特征数据、当天的风速数据
data = xlsread('特征序列及实际值.xlsx');
Features   = data(1:18,:);                             %% 特征输入  :75天,每天24小时,每小时一个采样点,共计75*24=1800小时,18个特征数据
Wind_data  = data(19,:);                               %% 实际值输出:75天,每天24小时,每小时一个采样点,共计75*24=1800小时的风速数据

%%  数据平铺为4-D
LP_Features =  double(reshape(Features,18,24,1,75));   %% 特征数据格式为18*24*1*75,分别对应18特征24小时,75天
LP_WindData  = double(reshape(Wind_data,24,1,1,75));   %% 实际数据格式为24*1*1*75 ,分别对应24小时,75天

%% 格式转换为cell
NumDays  = 75;                                         %% 数据总天数为 75天
for i=1:NumDays
    FeaturesData{1,i} = LP_Features(:,:,1,i);
end

for i=1:NumDays
    RealData{1,i} = LP_WindData(:,:,1,i);
end

%% 划分数据
XTrain = FeaturesData(:,1:73);                         %% 训练集输入为 1-73   天的特征
YTrain = RealData(:,2:74);                             %% 训练集输出为 2-74天 的实际值                

XTest  = cell2mat(FeaturesData(: , 74));               %% 测试集输入第  74    天的特征
Ytest  = cell2mat(RealData(: , 75));                   %% 测试集输出为第 75天 的实际值

%% LSTM搭建
layers = [
    sequenceInputLayer([18 24 1],"Name","sequence")
    flattenLayer("Name","flatten")
    lstmLayer(128,"Name","lstm")
    fullyConnectedLayer(24,"Name","fc")
    regressionLayer("Name","regressionoutput")];

本程序免费送给感兴趣的小伙伴,欢迎关注并获取完整代码和数据哦~

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 首先,LSTM短期记忆)神经网络是一种递归神经网络,它能够对序列数据进行建模和预测。在多变量时间序列预测中,LSTM可以对多个时间序列进行联合建模和预测。下面是使用MATLAB实现LSTM变量时间序列预测的基本骤: 1.准备数据:将多个时间序列数据整理成一个矩阵,其中每一列代表一个时间序列。 2.数据预处理:对数据进行归一化处理,使其取值范围在0和1之间。 3.数据划分:将数据划分为训练集和测试集。 4.模型构建:使用MATLAB中的LSTM函数构建LSTM模型,并定义模型的超参数,如LSTM层数、LSTM单元数、学习率等。 5.模型训练:使用训练集对LSTM模型进行训练,并记录训练误差。 6.模型验证:使用测试集对LSTM模型进行验证,并计算预测误差。 7.结果分析:对模型的预测结果进行分析和可视化。 以下是一个简单的MATLAB代码示例,用于实现LSTM变量时间序列预测: ```matlab % 准备数据 data = csvread('data.csv'); x = normalize(data(:, 1:end-1)); % 归一化,去掉最后一列作为标签 y = normalize(data(:, end)); % 数据划分 train_ratio = 0.8; train_size = floor(size(x, 1) * train_ratio); train_x = x(1:train_size, :); train_y = y(1:train_size); test_x = x(train_size+1:end, :); test_y = y(train_size+1:end); % 模型构建 num_features = size(train_x, 2); num_responses = 1; % 只预测一个变量 num_hidden_units = 100; num_layers = 2; net = lstm(num_hidden_units, num_layers, 'OutputMode', 'last'); % 训练模型 options = trainingOptions('adam', ... 'MaxEpochs', 100, ... 'MiniBatchSize', 64, ... 'InitialLearnRate', 0.01, ... 'LearnRateSchedule', 'piecewise', ... 'LearnRateDropFactor', 0.1, ... 'LearnRateDropPeriod', 50, ... 'GradientThreshold', 1, ... 'Shuffle', 'every-epoch', ... 'ValidationData', {test_x', test_y'}, ... 'Plots', 'training-progress'); [net, info] = trainNetwork(train_x', train_y', net, options); % 模型验证 y_pred = predict(net, test_x')'; rmse = sqrt(mean((y_pred - test_y).^2)); % 结果可视化 figure plot(test_y) hold on plot(y_pred) legend('True', 'Predicted') ``` 在上述代码中,我们首先准备了数据,并将其划分为训练集和测试集。然后,我们构建了一个LSTM模型,定义了模型的超参数,并使用训练集对模型进行训练。接下来,我们使用测试集对模型进行验证,并计算了预测误差。最后,我们将模型的预测结果可视化。 ### 回答2: 首先,LSTM短期记忆)是一种循环神经网络(RNN)的变体,它在处理时间序列数据方面表现出色。在Matlab中,我们可以使用深度学习工具箱来实现LSTM神经网络。 要实现多变量时间序列预测,我们首先需要准备我们的数据集。数据集应包含多个时间序列变量和对应的目标变量。然后,我们可以使用Matlab中的适当函数(例如timeseries)来加载和处理数据。 接下来,我们需要定义我们的LSTM神经网络模型。在Matlab中,我们可以使用lstmLayer函数来创建一个LSTM层对象,并设置相关的参数,如隐藏状态维度和门控单元数。 然后,我们可以使用sequential函数来创建一个序贯模型,该模型将LSTM层与其他层(例如全连接层)连接起来。在序贯模型中,我们可以设置并堆叠多个LSTM层和其他层。 在模型定义完成后,我们可以使用网络训练函数(例如trainNetwork)来训练我们的LSTM模型。我们需要提供训练数据和相关参数,如迭代次数和学习率。 一旦训练完成,我们可以使用该模型来进行预测。我们可以使用predict函数来生成预测值,并与实际值进行比较和评估。 最后,我们可以使用可视化工具(例如plot函数)来展示预测结果和实际值之间的差异。 总结来说,使用Matlab实现LSTM神经网络变量时间序列预测需要准备数据集、定义网络模型、训练模型,进行预测并进行结果评估。Matlab的深度学习工具箱提供了方便而强大的功能来支持这些骤。 ### 回答3: LSTM短期记忆)是一种特殊的循环神经网络(RNN),在处理序列时表现出色。为了实现对多变量时间序列的预测,可以使用Matlab中的神经网络工具箱。 首先,需要准备好时间序列数据集。多变量时间序列由多个变量组成,每个变量在不同时间点上具有不同的观测值。该数据集应该包含多个时间骤的输入和对应的输出。 接下来,可以使用Matlab的将数据集划分为训练集和测试集。确保训练集包含足够的数据来训练LSTM模型,而测试集用于评估模型的性能。 然后,可以使用Matlab中的神经网络工具箱创建LSTM模型。LSTM模型由多个LSTM层和一个输出层组成。可以通过设置每个层的大小和激活函数来定义模型的结构。 在模型创建后,可以使用训练集对其进行训练。使用Matlab中的神经网络工具箱中的训练算法来优化模型的权重和偏差。训练过程中可以设置训练的轮数、学习率和其他参数。 经过训练后,可以使用测试集评估模型的预测能力。通过将测试集的输入提供给训练好的模型,可以获取对应的预测输出。与实际的测试集输出值进行比较,可以计算出模型的性能指标,如均方根误差(RMSE)或平均绝对误差(MAE)。 最后,可以使用训练好的模型对未来的多变量时间序列进行预测。在实际应用中,可以提供最新的观测值作为输入,并根据模型的预测输出做出相应的决策。 总之,使用Matlab的神经网络工具箱可以很方便地实现LSTM模型对多变量时间序列的预测。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值