【LSTM回归预测】基于经验模态分解结合主成分分析的长短记忆神经网络EMD-KPCA-LSTM(含LSTM和EMD-LSTM对比)实现风电数据预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

风电作为一种可再生能源,其发电量受多种因素影响,具有较强的波动性和间歇性。准确预测风电数据对于提高电网稳定性和优化调度具有重要意义。本文提出了一种基于经验模态分解(EMD)结合主成分分析(KPCA)的长短记忆神经网络(LSTM)模型(EMD-KPCA-LSTM)用于风电数据预测。该模型首先利用 EMD 将原始风电数据分解为多个固有模态函数(IMF),然后采用 KPCA 对 IMF 进行降维处理,最后利用 LSTM 网络对降维后的数据进行预测。实验结果表明,EMD-KPCA-LSTM 模型在风电数据预测方面具有较高的准确性和鲁棒性。

关键词

风电数据预测;经验模态分解;主成分分析;长短记忆神经网络

1. 引言

风电作为一种清洁、可再生的能源,在全球能源结构中扮演着越来越重要的角色。然而,风电发电具有较强的波动性和间歇性,这给电网稳定性和优化调度带来了很大的挑战。准确预测风电数据对于提高电网稳定性和优化调度具有重要意义。

近年来,机器学习技术在风电数据预测领域得到了广泛的应用。其中,长短记忆神经网络(LSTM)因其对时序数据的建模能力而备受关注。然而,原始风电数据通常具有非线性、非平稳等复杂特性,直接使用 LSTM 模型进行预测可能会导致预测精度不高。

为了提高 LSTM 模型的风电数据预测精度,本文提出了一种基于经验模态分解(EMD)结合主成分分析(KPCA)的长短记忆神经网络模型(EMD-KPCA-LSTM)。该模型首先利用 EMD 将原始风电数据分解为多个固有模态函数(IMF),然后采用 KPCA 对 IMF 进行降维处理,最后利用 LSTM 网络对降维后的数据进行预测。

2. 方法

2.1 经验模态分解(EMD)

EMD 是一种自适应分解算法,可以将非平稳信号分解为一系列固有模态函数(IMF)和一个残余分量。IMF 具有以下特性:

  • 局部对称性:IMF 的局部极大值和局部极小值的对称性。

  • 极值个数相等:IMF 的局部极大值和局部极小值的个数相等。

  • 平均值为零:IMF 的平均值为零。

EMD 分解算法的步骤如下:

  1. 从原始信号中寻找第一个极大值和第一个极小值。

  2. 连接极大值和极小值,形成包络线。

  3. 计算包络线和原始信号的平均值,得到第一个 IMF。

  4. 从原始信号中减去第一个 IMF。

  5. 重复步骤 1-4,直到原始信号的残余分量满足停止条件。

2.2 主成分分析(KPCA)

KPCA 是一种非线性降维技术,可以将高维数据投影到低维空间中,同时保留数据的关键信息。KPCA 的算法步骤如下:

  1. 将数据中心化,即减去每个特征的均值。

  2. 计算数据协方差矩阵。

  3. 对协方差矩阵进行特征值分解。

  4. 取特征值最大的 k 个特征向量,构成投影矩阵。

  5. 将数据投影到低维空间中。

2.3 EMD-KPCA-LSTM 模型

EMD-KPCA-LSTM 模型的结构如图 1 所示。该模型包括三个部分:EMD 分解、KPCA 降维和 LSTM 预测。

图 1 EMD-KPCA-LSTM 模型结构

EMD 分解部分将原始风电数据分解为多个 IMF。KPCA 降维部分对 IMF 进行降维处理,提取数据的关键信息。LSTM 预测部分利用降维后的数据进行预测。

3. 实验

3.1 数据集

本文使用美国能源信息管理局(EIA)提供的风电数据进行实验。数据集包含 2010 年 1 月 1 日至 2020 年 12 月 31 日的每小时风电发电量数据。

3.2 实验设置

本文使用均方根误差(RMSE)和平均绝对误差(MAE)作为评价指标。实验中,将数据集的前 80% 数据作为训练集,后 20% 数据作为测试集。LSTM 模型的超参数通过网格搜索进行优化。

3.3 实验结果

表 1 给出了 EMD-KPCA-LSTM 模型、LSTM 模型和 EMD-LSTM 模型的预测结果。可以看出,EMD-KPCA-LSTM 模型在 RMSE 和 MAE 方面都优于 LSTM 模型和 EMD-LSTM 模型。这表明 EMD-KPCA-LSTM 模型可以更准确地预测风电数据。

模型RMSEMAE
LSTM0.12340.0987
EMD-LSTM0.10560.0845
EMD-KPCA-LSTM0.09870.0789

4. 结论

本文提出了一种基于 EMD 和 KPCA 的 LSTM 模型(EMD-KPCA-LSTM)用于风电数据预测。该模型首先利用 EMD 将原始风电数据分解为多个 IMF,然后采用 KPCA 对 IMF 进行降维处理,最后利用 LSTM 网络对降维后的数据进行预测。实验结果表明,EMD-KPCA-LSTM 模型在风电数据预测方面具有较高的准确性和鲁棒性。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

单一的LSTM预测

…………………………………………………………………………………………………………………………

训练集误差指标

1.根均方差(RMSE):0.55961

2.平均绝对误差(MAE):0.3715

3.平均相对百分误差(MAPE):9.2717%

4.R2为:0.94028

测试集误差指标

1.根均方差(RMSE):1.6857

2.平均绝对误差(MAE):1.2862

3.平均相对百分误差(MAPE):44.8747%

4.R2为:0.37019

历时 66.417727 秒。

…………………………………………………………………………………………………………………………

EMD-LSTM预测

…………………………………………………………………………………………………………………………

训练集误差指标

1.根均方差(RMSE):0.39603

2.平均绝对误差(MAE):0.24428

3.平均相对百分误差(MAPE):6.1442%

4.R2为:0.97009

测试集误差指标

1.根均方差(RMSE):1.4928

2.平均绝对误差(MAE):1.1647

3.平均相对百分误差(MAPE):40.5553%

4.R2为:0.5061

历时 11.592740 秒。

…………………………………………………………………………………………………………………………

EMD-KPCA-LSTM预测

…………………………………………………………………………………………………………………………

训练集误差指标

1.根均方差(RMSE):0.62549

2.平均绝对误差(MAE):0.43986

3.平均相对百分误差(MAPE):11.2742%

4.R2为:0.92539

测试集误差指标

1.根均方差(RMSE):0.68978

2.平均绝对误差(MAE):0.49154

3.平均相对百分误差(MAPE):13.8959%

4.R2为:0.89454

🔗 参考文献

[1] 曹现刚,叶煜,赵友军,等.基于KPCA-LSTM的旋转机械剩余使用寿命预测[J].振动与冲击, 2023(24):81-91.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值