利用LSTM(Long Short-Term Memory)进行回归预测的原理和python代码

文章介绍了LSTM长短期记忆网络的基本概念,并详细阐述了如何使用Python的Keras库构建LSTM模型进行回归预测,包括数据预处理、模型构建、训练和预测。提供了一个简单的代码示例,展示如何处理时间序列数据并评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


一、LSTM(Long Short-Term Memory)是什么?

LSTM(Long Short-Term Memory)是一种递归神经网络,主要用于时序数据建模和预测。相对于普通的循环神经网络,LSTM在解决长期依赖问题方面表现更为优异。

二、使用LSTM进行回归预测时需要以下几个步骤

1.数据预处理:

根据实际情况进行缩放、归一化、特征提取等操作,使之适合LSTM模型输入要求。

2.构建LSTM模型:

使用keras或tensorflow框架搭建LSTM模型,包括定义模型结构、选择损失函数以及评价方法等。

3.模型训练:

将数据集分为训练集和验证集,并使用LSTM模型对训练集进行训练。

4.模型预测:

使用LSTM模型对测试集进行预测,将预测结果与实际结果进行比较得出模型效果。

三、Python实现的简单LSTM回归预测程序代码

代码如下(示例):

# 导入库
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM

# 定义函数,生成训练集和测试集
def generate_train_test_data(data,window_size):
    train_X,train_Y,test_X,test_Y=[],[],[],[]
    for i in range(len(data)-window_size-1):
        # 取出训练数据
        train_X.append(data[i:(i+window_size),0])
        # 取出训练集对应的输出
        train_Y.append(data[i+window_size, 0])
    for j in range(len(data)-window_size-1,len(data)-1):
        # 取出测试数据
        test_X.append(data[j:(j+window_size),0])
        # 取出测试集对应的输出
        test_Y.append(data[j+1,0])
    return np.array(train_X), np.array(train_Y), np.array(test_X), np.array(test_Y)

# 加载和准备数据集 
data = [10,13,17,25,29,12,35,47,31,18,28,39,41,26,20,17,22,15,10,28,33]
data = np.reshape(data, (len(data), 1))

# 划分数据集并设置窗口大小
window_size=3
train_X,train_Y,test_X,test_Y=generate_train_test_data(data,window_size)

# 建立模型
model = Sequential()
model.add(LSTM(64, input_shape=(window_size,1)))
model.add(Dense(1))
 
# 编译模型并定义损失和优化方法
model.compile(loss='mean_squared_error', optimizer='adam')
 
# 训练模型 
model.fit(train_X, train_Y, epochs=300, batch_size=3, verbose=2)
 
# 预测
train_predict=model.predict(train_X)
test_predict=model.predict(test_X)

# 输出结果
print("Train Mean Absolute Error:",np.mean(np.abs(train_predict - train_Y)))
print("Train Root Mean Squared Error:",np.mean(np.sqrt((train_predict - train_Y)**2)))
print("Test Mean Absolute Error:",np.mean(np.abs(test_predict - test_Y)))
print("Test Root Mean Squared Error:",np.mean(np.sqrt((test_predict - test_Y)**2)))


总结

在这个例子中,输入的原始数据为一个长度为21的数组,然后通过generate_train_test_data()函数生成训练集和测试集。接下来,会建立一个LSTM模型来对数据进行回归预测,使用model.fit()函数来训练模型并对其进行优化。最后输出模型的误差和准确性结果,以便分析模型的表现。

要获取 Long Short-Term Memory (LSTM) 的原始论文 PDF 文件,可以通过以下方法实现: ### 方法一:访问学术资源网站 Sepp Hochreiter Jürgen Schmidhuber 在 1997 年发表了 LSTM 的开创性论文《Long Short-Term Memory》。这篇论文可以在多个学术资源平台上找到,例如: - **arXiv**: 如果该论文已被上传到 arXiv,则可以直接通过搜索引擎输入标题查找。 - **Google Scholar**: 输入完整的论文名称 “Long Short-Term Memory”,通常会提供免费的 PDF 下载链接或者付费购买选项。 - **ResearchGate 或 Academia.edu**: 这些平台可能由作者或其他研究者分享了可公开下载的版本。 如果上述方式无法直接获得免费版 PDF,还可以尝试联系图书馆或教育机构订阅的服务数据库,比如 IEEE Xplore、SpringerLink 等[^1]。 ### 方法二:利用开源项目中的文档 一些深度学习框架(如 TensorFlow、PyTorch)以及教程博客可能会附带推荐阅读材料列表,其中包含经典模型的相关背景资料链接。此外,在 GitHub 上搜索关键词“lstm paper implementation”也可能发现有人整理好了原版文章供学习交流使用[^2]。 需要注意的是,在某些情况下,即使找到了合法渠道提供的电子副本,仍需注意版权规定以确保合理使用这些内容。 对于实际应用方面提到的新变种架构 xLSTM 改进了传统方法针对低频词汇建模效果不佳的问题;具体技术细节则需要查阅后续发展成果文献进一步了解[^3]。 ```python import requests def download_paper(url, filename="paper.pdf"): response = requests.get(url) with open(filename, 'wb') as f: f.write(response.content) # Example usage download_paper("https://www.example.com/path/to/lstm-paper", "Hochreiter_Schmidhuber_LSTM_1997.pdf") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值