R语言实现计算MR工具变量F-staistics(1)

本文介绍了如何在遗传关联研究中,通过F-statistics方法将数据转换为MAF,并利用Ff函数计算风险比和F统计量,以检测可能的仪器偏倚。作者提醒,当Fm小于10时,应警惕弱仪器偏倚问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#F-statistics
#Basic analysis
#导入包
library(TwoSampleMR)
library(MRPRESSO)
#导入暴露变量数据:aspirin----ukb-b-8755
aaa<- extract_instruments(outcomes='ukb-b-8755',
                          clump=TRUE, p1 = 5e-08,
                          r2=0.001,kb=10000,access_token=NULL)
#Method 1 : Convert eaf to maf
aaa$MAF = ifelse(aaa$eaf.exposure < 0.5, 
                 aaa$eaf.exposure,
                 1-aaa$eaf.exposure)
Ff<-function(data){
  maf<-ifelse(data$eaf.exposure < 0.5, 
              data$eaf.exposure,
              1-data$eaf.exposure)
  n<-data$samplesize.exposure
  eaf<-data$eaf.exposure
  beta<-data$beta.exposure
  se<-data$se.exposure
  #The below two methods are all right
  #rr<-(2*(beta^2)*eaf*(1-eaf)) /(2*(beta^2)*eaf* (1-eaf) +2*n*eaf*(1-eaf)*se^2)
  rr<-beta^2/(beta^2+se^2*(data$samplesize.exposure-2))
  ff<-((n-2)*rr)/(1-rr)
  mean<-mean(ff)
  li<-list(r2=rr,
           fs=ff,
           fm=mean)
  print(mean)
  print("if fm=<10, please pay attention to weak instrument bias")
  return(li)
}
a<-Ff(data=aaa)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值