1.主方向与主分量
二阶张量可定义为一种由矢量
a
a
a到矢量
b
b
b的线性变换,即:
一般说,矢量
a
a
a与
b
b
b并不同向。对于给定的任意二阶张量
T
T
T能否找到某个矢量
v
v
v,它在线性变换后能保持方向不变,即:
或者
其中
λ
\lambda
λ是标量。上式是求
v
j
v_j
vj的线性齐次代数方程组,存在非零解的充分必要条件是系数行列式为零:
推出:
这是一个关于
λ
\lambda
λ的特征方程,
I
1
I_1
I1:
是
[
T
i
j
]
[T_{ij}]
[Tij]的主对角分量之和,称为张量
T
T
T的迹,记作
t
r
T
trT
trT
I
2
I_2
I2:
I
2
I_2
I2是矩阵
[
T
i
j
]
[T_{ij}]
[Tij]的二阶主子式之和。
I
3
I_3
I3:
I
3
I_3
I3是矩阵的行列式,记作
d
e
t
T
detT
detT。
特征方程的三个特征根称为张量
T
T
T的主分量。当
T
T
T是实对称张量时,存在三个实特征根
由上述方法求得的三个单位矢量
v
(
k
)
=
v
j
(
k
)
e
j
v_{(k)} = v_{j(k)}e_j
v(k)=vj(k)ej称为张量
T
T
T的主方向。
注意:
1.若
λ
(
1
)
,
λ
(
2
)
,
λ
(
3
)
\lambda_{(1)},\lambda_{(2)},\lambda_{(3)}
λ(1),λ(2),λ(3)互不相等,则
v
(
1
)
,
v
(
2
)
,
v
(
3
)
v_{(1)},v_{(2)},v_{(3)}
v(1),v(2),v(3)互相垂直。
2.对于二重根情况,例如
λ
(
1
)
=
λ
(
2
)
\lambda_{(1)} = \lambda_{(2)}
λ(1)=λ(2),则垂直于
v
(
3
)
v_{(3)}
v(3)的任何方向都是主方向,可任选其中两个互相垂直方向作为
v
(
1
)
v_{(1)}
v(1)和
v
(
2
)
v_{(2)}
v(2)。
3.对于三重根情况,例如
λ
(
1
)
=
λ
(
2
)
=
λ
(
3
)
\lambda_{(1)} = \lambda_{(2)} = \lambda_{(3)}
λ(1)=λ(2)=λ(3),则任何方向都是主方向,可任选三个互相垂直的方向作为
v
(
1
)
,
v
(
2
)
,
v
(
3
)
v_{(1)},v_{(2)},v_{(3)}
v(1),v(2),v(3)。
整个求解过程可罗列出来:
由特征方程求特征根:
由每个
λ
(
k
)
\lambda_{(k)}
λ(k)分别求特征方向
2.主坐标系
沿主方向
v
(
1
)
,
v
(
2
)
,
v
(
3
)
v_{(1)},v_{(2)},v_{(3)}
v(1),v(2),v(3)的正交坐标系称为张量
T
T
T的主坐标系。在主坐标系中,有:
当
T
T
T为应力张量时,
λ
(
k
)
\lambda_{(k)}
λ(k)就是三个主应力
σ
1
,
σ
2
,
σ
3
\sigma_1,\sigma_2,\sigma_3
σ1,σ2,σ3
3.不变量
特征方程是一个与坐标选择无关的普遍方程,它的三个系数
I
1
,
I
2
,
I
3
I_1,I_2,I_3
I1,I2,I3分别称为张量
T
T
T的第一、第二和第三不变量:
特征方程的根
λ
(
k
)
\lambda_{(k)}
λ(k)也是三个不变量,相应的主方向
v
(
k
)
v_{(k)}
v(k)也与坐标无关。
个人思考:
1.主方向和主分量分别对应线性代数中的特征值和特征向量,其具体的物理意义需要进一步学习才能慢慢清楚。
2.主坐标系是通过对张量主方向求解之后构建的一个坐标系。
3.强调了特征方程是一个与坐标选择无关的普遍方程。