张量学习(9):主方向与主分量

1.主方向与主分量

二阶张量可定义为一种由矢量 a a a到矢量 b b b的线性变换,即:
在这里插入图片描述
一般说,矢量 a a a b b b并不同向。对于给定的任意二阶张量 T T T能否找到某个矢量 v v v,它在线性变换后能保持方向不变,即:
在这里插入图片描述
或者
在这里插入图片描述
其中 λ \lambda λ是标量。上式是求 v j v_j vj的线性齐次代数方程组,存在非零解的充分必要条件是系数行列式为零:
在这里插入图片描述
推出:
在这里插入图片描述
这是一个关于 λ \lambda λ的特征方程,

I 1 I_1 I1
在这里插入图片描述
[ T i j ] [T_{ij}] [Tij]的主对角分量之和,称为张量 T T T的迹,记作 t r T trT trT

I 2 I_2 I2
在这里插入图片描述
I 2 I_2 I2是矩阵 [ T i j ] [T_{ij}] [Tij]的二阶主子式之和。

I 3 I_3 I3
在这里插入图片描述
I 3 I_3 I3是矩阵的行列式,记作 d e t T detT detT

特征方程的三个特征根称为张量 T T T的主分量。当 T T T是实对称张量时,存在三个实特征根
在这里插入图片描述
由上述方法求得的三个单位矢量 v ( k ) = v j ( k ) e j v_{(k)} = v_{j(k)}e_j v(k)=vj(k)ej称为张量 T T T的主方向。

注意:
1.若 λ ( 1 ) , λ ( 2 ) , λ ( 3 ) \lambda_{(1)},\lambda_{(2)},\lambda_{(3)} λ(1),λ(2),λ(3)互不相等,则 v ( 1 ) , v ( 2 ) , v ( 3 ) v_{(1)},v_{(2)},v_{(3)} v(1),v(2),v(3)互相垂直。
2.对于二重根情况,例如 λ ( 1 ) = λ ( 2 ) \lambda_{(1)} = \lambda_{(2)} λ(1)=λ(2),则垂直于 v ( 3 ) v_{(3)} v(3)的任何方向都是主方向,可任选其中两个互相垂直方向作为 v ( 1 ) v_{(1)} v(1) v ( 2 ) v_{(2)} v(2)
3.对于三重根情况,例如 λ ( 1 ) = λ ( 2 ) = λ ( 3 ) \lambda_{(1)} = \lambda_{(2)} = \lambda_{(3)} λ(1)=λ(2)=λ(3),则任何方向都是主方向,可任选三个互相垂直的方向作为 v ( 1 ) , v ( 2 ) , v ( 3 ) v_{(1)},v_{(2)},v_{(3)} v(1),v(2),v(3)

整个求解过程可罗列出来:
在这里插入图片描述
由特征方程求特征根:
在这里插入图片描述
由每个 λ ( k ) \lambda_{(k)} λ(k)分别求特征方向
在这里插入图片描述
在这里插入图片描述

2.主坐标系

沿主方向 v ( 1 ) , v ( 2 ) , v ( 3 ) v_{(1)},v_{(2)},v_{(3)} v(1),v(2),v(3)的正交坐标系称为张量 T T T的主坐标系。在主坐标系中,有:
在这里插入图片描述
T T T为应力张量时, λ ( k ) \lambda_{(k)} λ(k)就是三个主应力 σ 1 , σ 2 , σ 3 \sigma_1,\sigma_2,\sigma_3 σ1,σ2,σ3

3.不变量

特征方程是一个与坐标选择无关的普遍方程,它的三个系数 I 1 , I 2 , I 3 I_1,I_2,I_3 I1,I2,I3分别称为张量 T T T的第一、第二和第三不变量:
在这里插入图片描述
特征方程的根 λ ( k ) \lambda_{(k)} λ(k)也是三个不变量,相应的主方向 v ( k ) v_{(k)} v(k)也与坐标无关。

个人思考:

1.主方向和主分量分别对应线性代数中的特征值和特征向量,其具体的物理意义需要进一步学习才能慢慢清楚。
2.主坐标系是通过对张量主方向求解之后构建的一个坐标系。
3.强调了特征方程是一个与坐标选择无关的普遍方程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值