前言
如何计算大模型到底需要多少显存,是常常被问起的问题。
现从实用角度介绍一个简单公式和一个工具方便大家工作中使用。
1)估算公式(该公式来自于Sam Stoelinga简化[1])
符号 | 描述 |
---|---|
M | 用千兆字节 (GB) 表示的 GPU 内存 |
P | 模型中的参数数量。例如,一个 7B 模型有 7 亿参数。 |
4B | 4 字节,即每个参数使用的字节数 |
32 | 4 字节中有 32 位 |
Q | 加载模型时应使用的位数,例如 16 位、8 位或 4 位。 |
1.2 | 表示在 GPU 内存中加载额外内容的 20% 开销。 |
注意:该公式只是为了简化计算的估计,并未包含kvcache所需显存以及context大小的影响。
下面以运行16位精度的 Llama 70B 模型所需的 GPU 内存为例套用公式:
该模型有 700 亿参数。
M = (70 ∗ 4) / (32 / 16) ∗ 1.2 ≈ 168GB
由此可见,模型所需的 GPU 内存相当大。单个 80GB 的 A100 GPU 不足以满足需求,需要多个A100 GPU才能跑的起来。
如何进一步减少 Llama 2 70B 所需的 GPU 内存?
量化(Quantization)是一种减少内存占用的方法。通过将模型参数的精度从浮点数降低到低位表示(如 8 位整数),量化显著降低了内存和计算需求,使模型在资源有限的设备上更高效地部署。然而,这需要仔细管理以保持模型的性能,因为降低精度可能会影响输出的准确性。
通常认为 8 位量化能实现与 16 位精度相似的性能。而 4 位量化可能会显著影响模型的性能。
让我们再举一个 4 位量化的 Llama 2 70B 的例子:
M = (70 ∗ 4) / (32 / 4) ∗ 1.2 ≈ 42GB
这意味着你可以使用 2 个 24GB 的 L4 GPU 来运行这个模型。
2)评估工具:
在此基础上,介绍一个能够自动计算显存能载入运行多大参数量模型的程序[2],它的输入如下:
-
可用的 RAM(以 GB 为单位)
-
估计操作系统 RAM 使用量(以 GB 为单位)
-
上下文窗口大小(Token 数量)
-
量化级别(Quantization level,每个参数的比特数)
计算过程:
-
将可用的 RAM 和操作系统的开销从 GB 转换为字节数。
-
通过将 Token 数量乘以 0.5 MB 并转换为字节数来计算上下文窗口所需的内存。
-
通过从总可用 RAM 中减去操作系统开销和上下文窗口内存,计算出可用的 RAM(以字节为单位)。
-
将量化级别从比特转换为每个参数的字节数。
-
通过将可用 RAM 除以每个参数的字节数来计算最大参数数量。
-
将结果从参数转换为以十亿为单位的参数数量进行显示。
确定上述输入后就能直接看到能够支持的最大参数量,如果计算出的最大参数量为负值,这表示上下文窗口大小对于可用的 RAM 来说太大了。在这种情况下,程序会显示一个错误信息,建议用户减少上下文窗口大小或增加可用的 RAM。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】