MindSpore 设置昇腾Ascend 910显存的默认大小,单卡可执行多任务处理

文章讨论了在使用昇腾Ascend910和MindSpore时,遇到的显存占用问题,尤其是在执行简单运算时。通过调整`max_device_memory`参数,可以将默认的30GB显存降低至1GB,实现更灵活的任务并行和资源管理。
摘要由CSDN通过智能技术生成

默认显存占用

最近在使用昇腾Ascend 910和MindSpore进行训练和推理时,遇到了一个非常有趣的现象,就是无论是进行模型的训练还是推理,都会占用大约30GB的显存。即使只是进行一个简单的Tensor加减法的运算,也需要消耗30GB的显存,这看起来很难受。只做一个简单的Tensor逻辑运算,却占用了30GB的显存。最恶心的是,我花了大价钱从xxx地方购买到的国产化AI加速卡,难道只能同时执行一个任务?(小模型)

import mindspore as ms
x = ms.Tensor([10,20])
y = ms.Tensor([40,50])
b = x +y

显存占用情况:
显存占用

解决方法

参考:https://www.mindspore.cn/docs/zh-CN/r2.2/index.html
mindspore的context有个有个参数可以配置显存的默认占用情况:
在这里插入图片描述
max_device_memory, 用于设置显存大小,它的默认值是 30GB
由于30GB的默认值,导致了上面的问题
我们只需要配置这个参数就可以限制当前任务的显存占用:

import mindspore as ms
ms.set_context(max_device_memory="1GB")
x = ms.Tensor([10,20])
y = ms.Tensor([40,50])
b = x +y

结果:
在这里插入图片描述
通过对这个配置进行配置,可以灵活设置任务所需显存的大小,并且可以根据显存消耗情况进行多任务的并行运行。

应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>