MindSpore 设置昇腾Ascend 910显存的默认大小,单卡可执行多任务处理

文章讨论了在使用昇腾Ascend910和MindSpore时,遇到的显存占用问题,尤其是在执行简单运算时。通过调整`max_device_memory`参数,可以将默认的30GB显存降低至1GB,实现更灵活的任务并行和资源管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

默认显存占用

最近在使用昇腾Ascend 910和MindSpore进行训练和推理时,遇到了一个非常有趣的现象,就是无论是进行模型的训练还是推理,都会占用大约30GB的显存。即使只是进行一个简单的Tensor加减法的运算,也需要消耗30GB的显存,这看起来很难受。只做一个简单的Tensor逻辑运算,却占用了30GB的显存。最恶心的是,我花了大价钱从xxx地方购买到的国产化AI加速卡,难道只能同时执行一个任务?(小模型)

import mindspore as ms
x = ms.Tensor([10,20])
y = ms.Tensor([40,50])
b = x +y

显存占用情况:
显存占用

解决方法

参考:https://www.mindspore.cn/docs/zh-CN/r2.2/index.html
mindspore的context有个有个参数可以配置显存的默认占用情况:
在这里插入图片描述
max_device_memory, 用于设置显存大小,它的默认值是 30GB
由于30GB的默认值,导致了上面的问题
我们只需要配置这个参数就可以限制当前任务的显存占用:

import mindspore as ms
ms.set_context(max_device_memory="1GB")
x = ms.Tensor([10,20])
y = ms.Tensor([40,50])
b = x +y

结果:
在这里插入图片描述
通过对这个配置进行配置,可以灵活设置任务所需显存的大小,并且可以根据显存消耗情况进行多任务的并行运行。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值