Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

6 篇文章 0 订阅

分层Local Vision Transformer,通用主干网络,各类下游任务实现SOTA。

论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

作者:Ze Liu ,Yutong Lin,Yue Cao,Han Hu,Yixuan Wei,Zheng Zhang,Stephen Lin,Baining Guo

Code:https://github.com/microsoft/Swin-Transformer

介绍

自AlexNet以来,CNN作为骨干(backbone)在计算机视觉中得到了广泛应用;另一方面,自然语言处理中的网络结构的演变则走了一条不同的道路,现在的主流结构是Transformer。

Transformer是为序列建模和转换任务而设计的,它以关注数据中的长期依赖关系而著称。其在NLP领域的巨大成功吸引了人们研究它对CV的适应性,最近的实验显示其在图像分类和联合视觉语言建模方面有所成效。

本文的主要贡献有:

  1. 提出了一种分层Transformer,其可以作为计算机视觉的通用主干网络,并且在各类下游任务上取得SOTA;
  2. 通过Shift Windows实现了对输入图像尺寸的线性时间复杂度。
image-20211020204110669

Method

整体结构

image-20211018125415232

上图是Swin Transformer中最小版本的可视化结构图,其主要流程如下:

  1. 通过Patch Partition将输入的RGB图像分割成不重叠的Patch,堆叠进B维度;
  2. 使用Linear Embedding将通道映射至C;
  3. 紧接着使用两个连续的Swin Transformer Block,将上述组合称为Stage 1;
  4. 为了获得分层表示,通过Patch Merging对Stage 1的输出继续进行分块,并且同样会使用Linear Layer进行通道降维,再使用几个连续的Swin Transformer Block;如此,便能构成更多的Stage.

Shifted Window based Self-Attention

image-20211018165411438

连续的Swin Transformer如上图所示,其主要流程如下:

  1. 对于第一个Swin Transfromer Block,会先对输入 Z l − 1 Z^{l-1} Zl1使用LayerNorm,然后使用W-MSA(Window based Self-Attention),并且使用残差连接得到 z ^ l \hat z^l z^l,可以写成如下形式:
    Z ^ l = W − M S A ( L N ( Z l − 1 ) ) + Z l − 1 \hat Z^l = W-MSA(LN(Z^{l-1}))+Z^{l-1} Z^l=WMSA(LN(Zl1))+Zl1

  2. 接下来使用LN、MLP(两层、GELU激活函数)和残差连接的得到最终输出 Z l Z^l Zl,可以写成如下形式:
    Z l = M L P ( L N ( Z ^ l ) ) + Z ^ l Z^l=MLP(LN(\hat Z^l))+\hat Z^l Zl=MLP(LN(Z^l))+Z^l

  3. 对于接下来的Swin Transformer Block,会将其W-MSA替换成SW-MSA(Shifted Window based Self-Attention),可写成如下形式:
    Z ^ l + 1 = S W − M S A ( L N ( Z l ) ) + Z l Z l + 1 = M L P ( L N ( Z ^ l + 1 ) ) + Z ^ l + 1 \hat Z^{l+1} = SW-MSA(LN(Z^{l}))+Z^{l}\\ Z^{l+1}=MLP(LN(\hat Z^{l+1}))+\hat Z^{l+1} Z^l+1=SWMSA(LN(Zl))+ZlZl+1=MLP(LN(Z^l+1))+Z^l+1

至此便完成了连续的Swin Transformer Block的构建,由于需要将这两种组合起来达到信息交换的目的,因此层数的设置应为偶数。

Self-attention in non-overlapped windows

为了实现线性的时间复杂度,提出在Window(窗口)中进行建模,窗口以非重叠的方式均匀地划分图像,这种方式在局部窗口中进行Patch的关系建模,计算注意力时,会将Patch展品与标准多头自注意力的时间复杂度对比如下:
Ω ( M S A ) = 4 h w C 2 + 2 ( h w ) 2 C Ω ( W − M S A ) = 4 h w C 2 + 2 M 2 h w C \Omega(MSA)=4hwC^2+2(hw)^2C\\ \Omega(W-MSA)=4hwC^2+2M^2hwC Ω(MSA)=4hwC2+2(hw)2CΩ(WMSA)=4hwC2+2M2hwC
其中输入包含 M × M M\times M M×M个Patch。

由于M是固定的,所有W-MSA对输入图像尺寸的复杂度呈线性。

Shifted window partitioning in successive blocks

虽然W-MSA解决了MSA时间复杂度随输入二次增长的问题,但是不同窗口间没有信息交流,这显然会限制模型的建模能力。

为了保持高效的同时进行有效建模,提出了Shifted Window:

image-20211019210948129

通过控制不同框的大小,实现上一层不同Window之间的信息交流,但是这样较难实现,并且Window的数量会从 [ h M ] × [ w M ] [\frac hM]\times[\frac wM] [Mh]×[Mw]增加到 ( [ h M ] + 1 ) × ( [ w M ] + 1 ) ([\frac hM]+1)\times([\frac wM]+1) ([Mh]+1)×([Mw]+1),并且某些Window的大小会小于 M × M M\times M M×M,因此提出了一种更简单的方法来实现这个功能:

image-20211019230354019

将原有的窗口以M/2的大小进行偏移,将多出的部分移动到相对的位置,这样就实现了不同Window之前的信息交流,不过需要注意的一点是,实际计算的过程中会使用Mask,将上图右侧移动过来的位置给盖住,原因是这部分的注意力没有意义。

Relative position bias

添加了相对位置偏置 B ∈ R M 2 × M 2 B\in \mathbb R^{M^2\times M^2} BRM2×M2,其描述每个Window相对于其它Window的相对位置,注意力公式可以写成:
A t t e n ( Q , K , V ) = S o f t M a x ( Q K T / d + B ) V Atten(Q,K,V)=SoftMax(QK^T/\sqrt d +B)V Atten(Q,K,V)=SoftMax(QKT/d +B)V
该相对位置偏置相较于绝对位置嵌入拥有更好的性能。

由于每个轴上的相对位置的取值范围都是 [ − M + 1 , M − 1 ] [-M+1,M-1] [M+1,M1],于是生成一个小的偏置矩阵 B ^ ∈ R ( 2 M − 1 ) × ( 2 M − 1 ) \hat B\in \mathbb{R}^{(2M-1)\times(2M-1)} B^R(2M1)×(2M1),相对位置偏置 B B B B ^ \hat B B^中采样而来。

Patch merging

Patch merging起到一个“下采样”的作用,具体实现方式是CNN中空间到深度的变换,将空间信息堆叠进通道中,这就相当于变相扩大了Window的大小

image-20211020114206242

代码分析

Window operation

window_partition:

将输入图像分割成 w i n d o w _ s i z e × w i n d o w _ s i z e window\_size\times window\_size window_size×window_size大小的patch,并堆叠进Batch维度。

def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size,
               W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous(
    ).view(-1, window_size, window_size, C)
    return windows

window_reverse:

恢复,用于残差连接之前。

def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size,
                     window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x

WindowAttention

该部分代码为W-MSA和SW-MSA,具体切换依赖于输入数据和mask,该模块只计算负责Window内的自注意力。

class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - \
            coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(
            1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - \
            1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index",
                             relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)#使用一个线性层生成QKV,使用切片分开
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)#对输出进行映射
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C //
                                  self.num_heads).permute(2, 0, 3, 1, 4)
        # make torchscript happy (cannot use tensor as tuple)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale #意义不明
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None: #当使用SW-MSA时,会使用mask
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

SwinTransformer

SwinTransformerBlock:

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop)

        if self.shift_size > 0:  # shift_size表示使用SW-MSA
            # calculate attention mask for SW-MSA
            H, W = self.input_resolution
            img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size, -self.shift_size),
                        slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            # nW, window_size, window_size, 1
            mask_windows = window_partition(img_mask, self.window_size)
            mask_windows = mask_windows.view(-1,
                                             self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(
                attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        else:
            attn_mask = None

        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(
                x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        # nW*B, window_size, window_size, C
        x_windows = window_partition(shifted_x, self.window_size)
        # nW*B, window_size*window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)

        # W-MSA/SW-MSA
        # nW*B, window_size*window_size, C
        attn_windows = self.attn(x_windows, mask=self.attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1,
                                         self.window_size, self.window_size, C)
        shifted_x = window_reverse(
            attn_windows, self.window_size, H, W)  # B H' W' C ,还原

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(
                self.shift_size, self.shift_size), dims=(1, 2))  # 使用torch.roll实现shift
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

stage:

下面的代码用来实现一个stage,每个stage中的MSA部分包含偶数个Swin Transformer Block

class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        # 偶数层使用Shift,奇数层不用
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (
                                     i % 2 == 0) else window_size // 2,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(
                                     drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(
                input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

Swin Transformer:

主干以及head,将多个stage组合起来,但是对分割似乎不太友好,因为Swin Transformer只有下采样,上采样过程需要使用CNN的方法自行实现。

class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(
                torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
                                                sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               window_size=window_size,
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(
                                   depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (
                                   i_layer < self.num_layers - 1) else None,
                               use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(
            self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

downsample

这里的下采样采用的是空间到深度的转换:

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

其他

PatchEmbed:

对输入图像使用PatchEmbed生成token表示:

class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] //
                              patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim,
                              kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

通用型的主干网络需要什么?

本文旨在使用Transformer构建一个通用的主干网络,那么一个通用的主干网络需要什么呢?

  1. 轻量
  2. 强大的特征提取能力
  3. 多尺度

local vision transformer

众所周知,Transformer是一种自注意力,而自注意力的关键就是计算全局中所有token之间的关系,这似乎与local有很大的矛盾。

最近越来越多的工作对local vision transformer进行研究,其实际上是一种local attention,比如之前的VOLO outlooker attention,其优点主要在于计算复杂度低,相较于Transformer的全局粗略建模能够更精细地在局部进行建模(VOLO的观点),但是其局部的关注与Transformer是相悖的,因此提出了各种Cross Window的信息交流方式:

比如本文的Shift Windows,美团Twins的local attention和global attention结合,华为MSG-Transformer使用的信使token,交大GG-Transformer使用的AdaptivelyDilatedSplitting使用Dilate的思想来从全局采集Window(类似于shuffle加上从深度到空间的转换),腾讯的Shuffle Transformer(与GG-Transformer类似)等,以及之前的Recurrent Criss-Cross Attention,其利用横纵轴上信息计算全局注意力,或是类似于RCCA模块的CSWin Transformer。

这些都是local attention,但是通过不同的方法增强了其全局建模的能力,具体原因可能是因为local attention的稀疏连接性,这也是VOLO的思想所在,并且除了上述网络,也在很多网络中得以体现,比如ECANet针对SENet的改进,其使用一维卷积获得注意力权重,但是取得了更好的效果。

关于这点将在Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight进行讨论——Local vision transformer work的原因究竟是什么?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值