【逻辑设计】卡诺图 | 布尔方程式 | 最小项与最大项 | 卡诺图无关项 Don‘t cares

 

Ⅰ. 前置知识:最大小项、布尔方程

0x00 卡诺图的定义

📚 定义:布尔方程

f(x) = B^n\rightarrow B

f(x):\left \{ 0,1 \right \}^n\rightarrow \left \{ 0,1 \right \}

  • letter :一个常数或一个变量
  • literal : 一个字母或其补码

eg. 

0x01 乘积项与合项(Product and Sum term)

乘积项(Product term):

Product term (product, term)
		1
		a non-constant literal
		a conjunction of non-constant literals where no letter appears     	
        more than once

1,\, \, X_1,\, \, X_1'X_2,\, \, X_1X_2X_1'(X),\, \, X_1+X_2'(X)

例如:A\times B+1=... ,本算式中,A\times B 就是一个乘积项

合项(Sum term):

Sum term
		0
		a non-constant literal
		a disjunction of non-constant literals where no letter appears 
        more than once

0,\, \, X_1,\, \, X_1+X_2',\, \, X_1'X_2(X),\, \, X_1+X_2+X_1'(X)

0x02 最小项与最大项(Minterm and Maxterm)

📚 最小项的定义: 

n 个变量 X_1,X_2,...,X_n 的最小项是 n 个因子的乘积。

一个函数的某个乘积项包含了函数的全部变量,

其中 每个变量 都以它的 原变量 或 反变量的形式 在乘积中出现,且 仅出现一次 

我们称这个乘积项为该函数的一个标准积项 —— 最小项 (Minterm) 。

简单来说,最小项就是所有变量从头到尾只用一次的乘积项 (product term),比如变量 X,Y,Z :

X'YZ, XYZ', XYZ, X'Y'Z', XY (X), X'Z (X)

我们通常用小写字母 m_i  来表示最小项,这里的 i 为下标,其确定方式如下:

将最小项中的原变量记为 1,非变量记为 0,当变量顺序确定后,可以按顺序排列成一个二进制数,与这个二进制数相对应的十进制数就是该最小项的下标 i 。

A'BC',A'BC,A'BC',A'BC,ABC',AB'C,ABC',ABC

若将原变量记为 1,反变量记录 0,则对应十进制后的值则为 m_i 的表示方式:

\\ 000\rightarrow 0\rightarrow m_0 \\ 001 \rightarrow 1 \rightarrow m_1 \\ 010 \rightarrow 2 \rightarrow m_2 \\ 011 \rightarrow 3\rightarrow m_3 \\ 100 \rightarrow 4 \rightarrow m_4\\ 101\rightarrow 5\rightarrow m_5\\ 110\rightarrow 6\rightarrow m_6 \\ 111\rightarrow 7\rightarrow m_7

既然下标 i 已经确认,我们就可以将 m_0,m_1,m_2,m_3,m_4,m_5,m_6,m_7 记为:

\\m_0 = A'B'C'\\ m_1 = A'B'C\\ m_2 = A'BC' \\ m_3 = A'BC \\ m_4 = AB'C' \\ m_5 = AB'C \\ m_6 = ABC' \\ m_7 = ABC

📚 最大项的定义:

对于一个 n 变量的函数,该和项包括 n 个变量中的每一个变量。

一个函数的某个和项包含了函数的全部变量,

每个变量 都以 原变量 或 反变量的形式 出现一次,且 仅出现一次

我们称这个求和项为该函数的一个标准和项 —— 最大项 (Maxterm) 。

所有变量从头到尾只用一次的合项 (sum term),称为最大项。比如变量 X,Y,Z :

X+Y+Z, X'+Y+Z', X'+Y'+Z', X'+YZ (X), X+Z' (X)

我们通常用大写字母 M_i  来表示最大项,最大项下标 i 确定方式与最小项下标的取值恰好相反。

若将原变量记为 0,反变量记录 1(与最小项相反),三个变量形成的八个最大项记为:

(这里采用了 "拔" 的写法,这也是可以的,某些教材是采用 ' 表示的,只是表示方法不同) 

🔍 参照表:ABC 变量的极小项与极大项

0x03 布尔方程式(Boolean function)

  • 积之合 (Sum of product) ,简写为 SOP,用符号 \sum  表示。
  • 析取范式 (disjunctive normal form) ,简写为 DNF,用符号  \prod 表示。

f = x_1x_2' + x_2 'x_3 + x_1x_3'

  • 和之积 (Product of sum) ,简写为 POS,用符号 \sum 表示。
  • 合取范式 (conjunctive normal form) ,简写为 CNF,用符号  \prod 表示。

f = (x_1+ x_2 ')(x_2 + x_3 )(x_3 + x_1)

  • 积之合的典范:极小项之和 (Canonical sum of product : sum of minterms) :

               

  • 合之积的典范:极大项之和 (Canonical product of sum : product of maxterms)

Ⅱ. 卡诺图(K-Map)

0x00 卡诺图介绍(Karnaugh Map1953.NOV)

卡诺图 是一种平面方格图,每个小方格代表逻辑函数的一个最小项,故又称为最小项方格图。 方格图中相邻两个方格的两组变量取值相比,只有一个变量的取值发生变化,按照这一原则得出的方格图(全部方格构成正方形或长方形)就称为卡诺方格图,简称卡诺图。

卡诺图是一种描述逻辑函数的特殊方格图。

每一个方格代表逻辑函数的一个最小项,且几何相邻的小方格具有逻辑相邻性。

即  两相邻的小方格所代表的最小项只有一个变量取值不同。

对于有 n 个变量的逻辑函数,其最小项有 2^n 个。因此该逻辑函数的卡诺图是由 2^n 个小方格构成的,每个小方格都满足逻辑相邻项的要求。

几何相邻:在几何位置上,上下左右或左右相邻

逻辑相邻:两个最小项,只有一个变量的形式不同,其余的都相同。逻辑相邻的最小项可以合并。

📚 在布尔逻辑的积项和式中:

若 P 蕴涵 F,则乘积项 P 是布尔函数 F 的涵项(implicant)。更加准确的说:

  • F 是 n 个变量的布尔函数
  • P 是乘积项(Product term)
  • 若对于使 P 得到值 1 的所有组合,F 也等于 1,则 P 蕴涵 F (P 是 F 的涵项)

这意味着在布尔空间的自然次序上 P\Rightarrow F,比如函数:

蕴涵自 和很多其他的项: 它们是 f 的 涵项。

蕴含项(Implicant):2^k 个 1 的蕴含。 

 威拉德·冯·奥曼·蒯因 做过如下定义:

F 的质涵项(prime implicant):

  • 不包括在更大的蕴含(Implicant)中的蕴含。
  • 为最少化文字数量的涵项,即如果从 P 去除任何 "文字"(literal)都导致 P 成为 F 的非涵项。
  • 例如 100 和 101 是某逻辑函数的两个涵项,那么 10x 就是函数的一个质涵项,其中的 1 和 0 两个数字不可再去掉。

基本质涵项(essential prime implicant): 

  • 在形成一个 prime Implicant 的 1 中,至少有一个不属于另一个 Implicant,而是属于自己的 Prime Implicant 捆绑包的 Prime Implicant。
  • 蕴涵于不满足任何其他质涵项的最小项 (minterm) 的那些质涵项——若存在只被一个质涵项覆盖的最小项,则覆盖该最小项的质涵项为基本质涵项。
  • 如果以卡诺图的形式来描述逻辑函数,可以发现只有一种方式可以圈选这个输入组合。

简化函数:包括全部 E.P.I ,和一部分非必要的(non-essentialP.I 

蕴含项(Implicant):一个包含在函数 f(p\leq f) 中的乘积项 p

f = xy'+ yz,\, \, xy'\, \, (PI), \, \, xyz

首要隐含子(PI):

  • 一个不包括在 f 的任何其他蕴含中的蕴含(不能与另一个项结合以消除一个变量)

EPI (Essential Prime Implicant):

  • 指包括一个不包括在任何其他 P.I 中的最小项的 PI

⚡ 优化算法(Optimization Algorithm

找到所有的质含项(prime implicants)

在解决方案中包括所有必要质涵项(Essential Prime Implicant)

选择一个最小成本的 非基本质涵项集合(set of non-essential prime implicants),以覆盖所有尚未覆盖的最小项(minterms

0x01 卡诺图(Karnaugh Map)

0x02 变量图(variable map)

💭 变量图的例子:

0x03 三变量图(Three-variable Maps)

💬 观察:三变量和四变量地图上的相邻关系(Adjacencies on three- and four-variable maps)

0x04 进位与求和函数的地图表示(Map representation of carry and sum func)

💭 举个例子: 

x 'yz ' + x 'yz + xy 'z ' + xy 'z + xyz.

具有两个最小形式的函数的例子(Example Function with Two Minimal Forms):

F = \sum m(0,1,2,5,6,7)

0x05 四变量图(Four-variable Maps

g(w, x, y, z) = \sum m(2, 5, 6, 7, 9, 10, 11, 13, 15)

G = A'BC' + A'CD + ABC + AC'D

💭 卡诺图的例子:

0x06 五变量图(A Five Veriable Map)

一张五变量地图由25=32个方块组成:

0x07 卡诺图无关项(K-map with Don’t Cares)

在数字逻辑中,函数的无关术语是输入序列,对于该序列,函数输出无关紧要。已知永远不会发生的输入是不可实现的术语。这两种类型的条件在逻辑设计中都以相同的方式处理,为简洁起见,可以统称为无关条件。实现该功能的逻辑电路的设计人员无需关心此类输入,但通常可以随意选择电路的输出,以生成最简单的电路。

有时,一个 function table 或 map 会存在一些并没有什么卵用的项目:

  • 极小项(Minterm)的输入值永远不会出现
  • 或者,极小项(Minterm)的输出值根本用不着

在这些情况下,我们不需要定义其输出值,因为根本就没有这个必要!

我们可以将这些输出值被定义为 "无关项",即  Don’t cares 。

通过在函数表或映射中放置 " 无关条件的 "(加入一个 x ),就能降低逻辑电路的成本。

💭 举个例子:

  • 一个逻辑函数的输入是 BCD 数字的二进制代码。只有 0 到 9 的代码被使用。1010 到 1111 这六串代码(10~15)从未出现过,可以将这些代码的输出值设为 x ,代表无关项。

🔺 下列红色表示的部分即为无关项 Don't cares

  • 不完全指定函数的极小项展开(Minterm expansion for incompletely specified function)

F = \sum m(0,3,7) + {\color{Red} \sum d(1,6)}  

  • 不完全指定函数的极大项展开(Maxterm expansion for incompletely specified function)

F = \prod M(2,4,5)\, \, {\color{Red} \prod D(1,6)}

F(A,B,C,D) = \sum m(1,7,10,11,13) + \sum d(5,8,15)

极小项解:

F = BD + A'C'D + {\color{Blue} AB'C}

F = BD + A'C'D +({\color{DarkGreen} AB'D'} \, or\, {\color{DarkGreen} ACD})

(在极小项中不使用)

0x08 七段式显示器(A seven-segment display)

其真值表如下(Truth table of seven segment display):

📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2022.
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Introduction to Logic and Computer Design. International edition, 2008 Alan B.Marcovitx McGraw-Hill

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

卡诺图化简法_Samplay的博客-CSDN博客_卡诺图  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王平渊

喜欢的话可以支持下我的付费专栏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值