无人驾驶车辆的换道避撞路径追踪控制是一个关键的技术,它可以帮助自动驾驶系统在复杂的交通环境中实现安全、高效地换道避撞,本文将介绍一种基于CarSim模拟器的无人驾驶车辆换道避撞路径跟踪控制方法,并提供相应的源代码和描述。
CarSim是一款广泛使用的汽车动力学模拟软件,它可以模拟真实车辆的行驶动力学行为,可以利用CarSim来构建无人驾驶车辆的模型,并通过控制算法实现换道避撞路径的跟踪。
首先需要定义无人驾驶车辆的模型,假设我们的车辆模型具有以下状态变量:位置(x,y),速度v和航向角θ,还需要定义控制变量:加速度a和方向盘转角δ。
接下来需要设计换道避撞路径跟踪控制算法,这里采用经典的模型预测控制(Model Predictive Control,MPC)方法,MPC通过对未来一段时间内车辆行驶轨迹的预测来计算最优的控制策略。
以下是基于CarSim的无人驾驶车辆换道避撞路径跟踪控制的源代码:
import carsim
def main():
# 初始化CarSim模型
model &