对称矩阵的正交分解是指将一个实对称矩阵 (A) 分解为一个正交矩阵
(Q) 和一个对角矩阵
Λ 的乘积
即
A
=
Q
Λ
Q
T
即 A = Q \Lambda Q^T
即A=QΛQT
这里的 (Q) 是由 (A) 的标准化特征向量
作为列向量组成的正交矩阵,而 Λ 是一个对角矩阵,其对角线上的元素是 (A) 的特征值。
步骤说明及具体例子
考虑一个 2 * 2 的对称矩阵 (A) 作为例子:
A = ( 4 2 2 1 ) A = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} A=(4221)
步骤 1: 计算特征值和特征向量
首先,我们需要找到矩阵 (A) 的特征值和对应的特征向量。
- 计算特征值: 解方程 det ( A − λ I ) = 0 ,其中 I 是单位矩阵。 解方程 \det(A - \lambda I) = 0,其中 I 是单位矩阵。 解方程det(A−λI)=0,其中I是单位矩阵。
对于 A ,特征多项式为 λ 2 − 5 λ + 3 ,解得特征值 λ 1 = 3 和 λ 2 = 1 。 对于 A,特征多项式为 \lambda^2 - 5\lambda + 3,解得特征值 \lambda_1 = 3 和 \lambda_2 = 1。 对于A,特征多项式为λ2−5λ+3,解得特征值λ1=3和λ2=1。
- 找到特征向量:
对于每个特征值
λ
i
,解方程
(
A
−
λ
i
I
)
v
i
=
0
来找到对应的特征向量
v
i
。
对于每个特征值 \lambda_i,解方程 (A - \lambda_i I)v_i = 0 来找到对应的特征向量 v_i。
对于每个特征值λi,解方程(A−λiI)vi=0来找到对应的特征向量vi。
-
对于 λ 1 = 3 : ( A − 3 I ) v 1 = ( 1 2 2 − 2 ) v 1 = 0 对于 \lambda_1 = 3:\\ (A - 3I)v_1 = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}v_1 = 0 对于λ1=3:(A−3I)v1=(122−2)v1=0
解得 v 1 = ( 2 − 1 ) (忽略比例因子,可以选择使其成为单位向量)。 解得 v_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}(忽略比例因子,可以选择使其成为单位向量)。 解得v1=(2−1)(忽略比例因子,可以选择使其成为单位向量)。 -
对于 λ 2 = 1 : ( A − I ) v 2 = ( 3 2 2 0 ) v 2 = 0 对于 \lambda_2 = 1:\\ (A - I)v_2 = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}v_2 = 0 对于λ2=1:(A−I)v2=(3220)v2=0
解得 v 2 = ( − 2 3 ) (同样,可以选择使其成为单位向量)。 解得 v_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}(同样,可以选择使其成为单位向量)。 解得v2=(−23)(同样,可以选择使其成为单位向量)。
-
步骤 2: 构造正交矩阵 (Q) 和对角矩阵 Λ
-
正交化特征向量并单位化:由于对称矩阵的特征向量本就正交,我们只需要将它们单位化即可。 所以, v 1 和 v 2 已经正交,我们将其单位化: 所以,v_1和 v_2 已经正交,我们将其单位化: 所以,v1和v2已经正交,我们将其单位化:
q 1 = v 1 ∣ ∣ v 1 ∣ ∣ = ( 2 / 5 − 1 / 5 ) , q 2 = v 2 ∣ ∣ v 2 ∣ ∣ = ( − 2 / 13 3 / 13 ) q_1 = \frac{v_1}{||v_1||} = \begin{pmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{pmatrix}, \quad q_2 = \frac{v_2}{||v_2||} = \begin{pmatrix} -2/\sqrt{13} \\ 3/\sqrt{13} \end{pmatrix} q1=∣∣v1∣∣v1=(2/5−1/5),q2=∣∣v2∣∣v2=(−2/133/13)
然后,用这些向量作为列向量构造正交矩阵 (Q):
Q = ( 2 / 5 − 2 / 13 − 1 / 5 3 / 13 ) Q = \begin{pmatrix} 2/\sqrt{5} & -2/\sqrt{13} \\ -1/\sqrt{5} & 3/\sqrt{13} \end{pmatrix} Q=(2/5−1/5−2/133/13) -
构造对角矩阵 (\Lambda):将特征值放在对角线上:
Λ = ( 3 0 0 1 ) \Lambda = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} Λ=(3001)
步骤 3: 验证分解
最后,验证 A = Q Λ Q T 是否成立。 最后,验证 A = Q \Lambda Q^T 是否成立。 最后,验证A=QΛQT是否成立。这个验证过程较为繁琐,但在理论上,如果按照上述步骤正确执行,应当能够还原原始矩阵 (A)。