基于多图的聚类算法——多图聚类模型(Graph-based Multi-view Clustering, GMC)

多图聚类模型(Graph-based Multi-view Clustering, GMC)是一种专门设计用于处理多视图数据的聚类算法,它利用图结构来捕捉数据点之间的关系,并通过联合优化多个视图的图表示来达到更准确的聚类效果。

GMC算法的核心在于能够有效融合不同来源的信息,即使这些信息可能存在矛盾或不完整,也能从中提取出一致的聚类结构。

GMC算法的步骤和公式

1. 数据预处理

每个视图的数据集 X v = { x v , 1 , x v , 2 , … , x v , n } \mathcal{X}_v = \{x_{v,1}, x_{v,2}, \ldots, x_{v,n}\} Xv={xv,1,xv,2,,xv,n}
其中

  • v = 1 , 2 , … , V v = 1, 2, \ldots, V v=1,2,,V 表示视图索引
  • V V V 是视图的总数
  • n n n 是数据点的个数。
2. 构建图相似矩阵

对于每个视图 v v v,构建图相似矩阵 W v W_v Wv,通常使用高斯核函数来度量数据点之间的相似性:
W v ( i , j ) = exp ⁡ ( − ∥ x v , i − x v , j ∥ 2 2 σ 2 ) W_v(i,j) = \exp\left(-\frac{\|x_{v,i} - x_{v,j}\|^2}{2\sigma^2}\right) Wv(i,j)=exp(2σ2xv,ixv,j2)
其中, σ \sigma σ 是高斯核的带宽参数, ∥ ⋅ ∥ \| \cdot \| 表示欧几里得距离。

3. 构建拉普拉斯矩阵

对于每个视图 v v v,构建拉普拉斯矩阵 L v L_v Lv
L v = D v − W v L_v = D_v - W_v Lv=DvWv
其中, D v D_v Dv 是度矩阵,其对角线元素 D v ( i , i ) = ∑ j W v ( i , j ) D_v(i,i) = \sum_j W_v(i,j) Dv(i,i)=jWv(i,j)

4. 融合多视图信息

通过加权平均的方式融合所有视图的拉普拉斯矩阵,得到融合后的拉普拉斯矩阵 L L L
L = ∑ v = 1 V α v L v L = \sum_{v=1}^V \alpha_v L_v L=v=1VαvLv
其中, α v \alpha_v αv 是第 v v v 个视图的权重,通常需要满足 ∑ v = 1 V α v = 1 \sum_{v=1}^V \alpha_v = 1 v=1Vαv=1

5. 求解特征向量

求解融合后的拉普拉斯矩阵 L L L 的特征向量,这通常涉及到求解以下广义特征值问题:
L h = λ D h Lh = \lambda Dh Lh=λDh
其中, h h h 是特征向量, λ \lambda λ 是对应的特征值, D D D 是融合后的度矩阵。

6. 聚类

选取前 k k k 个特征向量( k k k 是聚类数目),构成矩阵 H H H,并对 H H H 的每一行应用 k k k-means 算法,以确定数据点的最终聚类归属。

目标公式

GMC算法的目标函数可以表述为最小化以下目标:
min ⁡ H Tr ( H T L H ) \min_{H} \text{Tr}(H^T L H) HminTr(HTLH)
其中

  • Tr \text{Tr} Tr 表示矩阵的迹
  • H H H 是由特征向量构成的矩阵
  • L L L 是融合后的拉普拉斯矩阵。

公式的作用

  • 构建图相似矩阵 W v W_v Wv 描述了每个视图中数据点之间的相似度,这对于构建图结构至关重要,是后续步骤的基础。
  • 构建拉普拉斯矩阵 L v L_v Lv 描述了图的结构,它反映了数据点之间的连接强度和网络结构。
  • 融合多视图信息:通过加权平均融合所有视图的拉普拉斯矩阵,可以充分利用多视图信息,提高聚类的准确性和鲁棒性。
  • 求解特征向量:特征向量提供了`数据点在低维空间中的表示``,便于后续的聚类分析。
  • 聚类:最终的聚类步骤通过将数据点映射到特征向量空间,然后应用 k k k-means 算法来确定聚类归属。

GMC算法通过上述步骤,能够有效地处理多视图数据集,捕捉数据点之间的复杂关系,并通过融合多源信息来增强聚类结果的准确性和一致性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值