24、D-NeRF: Neural Radiance Fields for Dynamic Scenes

简介

主页:https://www.albertpumarola.com/research/D-NeRF/index.html
在这里插入图片描述
NeRF只能重建静态场景,论文提出的方法可以把神经辐射场扩展到动态领域,可以在单相机围绕场景旋转一周的情况下重建物体的刚性和非刚性运动。由此把时间作为附加维度加到输入中,同时把学习过程分为两个阶段:第一个把场景编码到基准空间,另一个在特定时间把这种基准表达形式map到变形场景中。两个map都用fcn学习,训练完后可以通过控制相机视角和时间变量达到物体运动的效果。

和已有的4d方式不同点有:

  • 只需要一台摄像机
  • 不需要预先计算三维重建
  • 方法是端到端训练的

实现流程

D-NeRF可以学习一个连续的非刚性场景的体积密度表示,每个时间瞬间训练一个视图
在这里插入图片描述
给定一组由单目相机捕获的动态场景非刚性运动的稀疏图像,旨在设计一个深度学习模型来隐式编码场景,并在任意时间合成新的视图。
在这里插入图片描述
该架构由两个主要部分组成:一个变形网络Ψt,将所有场景变形映射到一个共同的正则配置,为了不失一般性,选择t = 0作为规范场景Ψt:(x, 0)→0;以及一个规范网络Ψx从每个相机射线回归体积密度和视相关的RGB颜色。

给定一个3D点x = (x, y, z),预测在时间瞬间t和视图方向d = (θ, φ)的发射颜色c = (r, g, b)和体积密度σ,简单理解为映射M:(x, d, t)→(c, σ),显然可以直接学习从6D空间(x,d,t)到4D空间(c,σ)的转换M,但是效果不好,所以论文采用上述结构,将单个网络拆分为一个变形网络Ψt,规范网络Ψx。

Canonical Network and Deformation Network

变形网络Ψt(x, t)→∆x,规范网络Ψx(x +∆x, d)→(c, σ)

规范网络 Ψx 和变形网络 Ψt 都由具有 ReLU 激活的简单 8 层 MLP 组成,规范网络 Ψx可以理解为原始NeRF

变形网络 Ψt,通过给定t时刻的3D点x,训练Ψt输出位移∆x,由于选择t = 0作为规范场景,当t=0时,Ψt = 0
在这里插入图片描述
与NeRF一样,x、d和t进入网络前被编码到一个更高的维空间,γ§ =< (sin(2lπp), cos(2lπp)) >L0,L = 10表示x, L = 4表示d和t

Volume Rendering

积分形式
在这里插入图片描述
离散形式
在这里插入图片描述

损失函数

最小化场景的T RGB图像{It}Tt=1及其对应的相机姿态矩阵{Tt}Tt=1的均方误差,同时学习规范Ψx和变形Ψt网络的参数
在这里插入图片描述

效果

使用单个Nvidia® GTX 1080进行2天的训练
在这里插入图片描述
在这里插入图片描述

NeRFNeural Radiance Fields)是一种新兴的计算机视觉技术,能够通过深度学习模型从多个二维图像中还原出高质量的三维场景。下面是NeRF领域的国内外研究现状: 1. 国外研究现状 自NeRF在2020年提出以来,该领域已经吸引了很多来自世界各地的研究者的关注。现在已经有很多关于NeRF的研究论文和代码库,主要是在计算机图形学和计算机视觉领域。其中,一些代表性的工作包括: - NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (Mildenhall等人, ECCV2020):这篇论文首次提出了NeRF的概念,是该领域的开创性工作。 - D-NeRF: Neural Radiance Fields for Dynamic Scenes (Martin-Brualla等人, CVPR2021):这篇论文针对动态场景提出了一种新的NeRF扩展方法,可以处理场景中的移动物体。 - Generative Query Network for More Flexible Object Representation (Nguyen-Phuoc等人, CVPR2019):这篇论文提出了一种称为GQN的神经网络模型,它使用场景图作为输入,并输出场景中的图像。 - PlenOctree: A Sparse Volumetric Representation for Efficient View Synthesis (Lombardi等人, SIGGRAPH Asia 2019):这篇论文提出了PlenOctree,一种用于NeRF的稀疏体积表示,可以显著提高NeRF的效率。 2. 国内研究现状 国内的NeRF研究相对较少,但近年来也有一些研究者开始在这个领域进行探索。一些代表性的工作包括: - Point2SpatialCapsule: Implicit Surfaces from Point Clouds with Spatially-Encapsulated Features (Chen等人, NeurIPS2020):这篇论文提出了一种新的神经网络模型,可以从点云中学习隐式表面表示,是NeRF的一种变体。 - Learning High-Resolution 3D Morphable Models from Texture Images for Dynamic View Synthesis (陈浩然等人, CVPR2021):这篇论文提出了一种新的方法,可以从高分辨率的纹理图像中学习高分辨率的3D模型,并实现了高质量的动态视角合成。 - Nerf-Lite: A Light-Weight Radiance Field Network for Real-Time Rendering (王明等人, ICME2021):这篇论文提出了一种轻量级的NeRF模型,可以实现实时渲
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值