Yolov5系列(一)——网络可视化工具netron

这篇博客介绍了如何利用netron工具来可视化yolov5系列的模型。首先,详细阐述了netron工具的功能和Windows系统的安装步骤。接着,讲解了将.pt模型转换为.onnx格式以适应netron的技巧,通过运行export.py脚本并安装onnx。最后,针对可能出现的ONNX导入失败问题,提出了使用pip安装onnx的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、介绍

netron:网络可视化工具,使用这个软件可以清晰的展示网络模型的每一层的输入输出,网络的整体的架构,而且支持不同的网络框架。
类似下图:
在这里插入图片描述

二、安装步骤(介绍windows系统安装)

(其他版本可以参考博客

1、打开此链接:Github下载链接

打开上述链接,划到下面 install,选择 windows 下载
在这里插入图片描述

2、选择下图所示Netron-Setup-5.8.9.exe,下载安装

在这里插入图片描述

3、安装成功之后显示如下:

<

我正在编辑【python】代码,遇到了 【PyTorch: starting from 'best.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 5, 8400) (6.0 MB) Traceback (most recent call last): File "C:\Users\15492\Desktop\ultralytics-main\export.py", line 5, in <module> success = model.export(format="onnx", batch=1) File "C:\Users\15492\Desktop\ultralytics-main\ultralytics\engine\model.py", line 734, in export return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) File "D:\Anaconda\envs\yolov8_2\lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "C:\Users\15492\Desktop\ultralytics-main\ultralytics\engine\exporter.py", line 326, in __call__ f[2], _ = self.export_onnx() File "C:\Users\15492\Desktop\ultralytics-main\ultralytics\engine\exporter.py", line 144, in outer_func raise e File "C:\Users\15492\Desktop\ultralytics-main\ultralytics\engine\exporter.py", line 139, in outer_func f, model = inner_func(*args, **kwargs) File "C:\Users\15492\Desktop\ultralytics-main\ultralytics\engine\exporter.py", line 417, in export_onnx import onnx # noqa ModuleNotFoundError: No module named 'onnx' requirements: Ultralytics requirements ['onnx>=1.12.0', 'onnxslim', 'onnxruntime'] not found, attempting AutoUpdate... requirements:AutoUpdate skipped (offline) ONNX: export failure ❌ 0.0s: No module named 'onnx'】 ,请帮我检查并改正错误点。我的原始代码如下: 【from ultralytics import YOLO model = YOLO("best.pt") success = model.export(format="onnx", batch=1)
03-29
<think>嗯,用户在使用YOLO模型导出到ONNX格式时遇到了错误,提示找不到'onnx'模块。首先,我需要分析错误信息。错误日志显示ModuleNotFoundError: No module named 'onnx',这说明系统环境中确实没有安装ONNX包。用户使用的是Ultralytics的导出功能,而该功能依赖ONNX的相关库,比如onnxonnxslim和onnxruntime。 接下来,用户提到requirements检测到缺少这些包,并且尝试自动更新失败,可能是因为处于离线状态。所以,解决问题的直接方法应该是手动安装这些缺失的依赖项。需要确认用户是否已经正确安装这些包,如果没有,指导用户通过pip安装。 用户提供的代码本身看起来没有问题,导出ONNX的步骤是正确的。因此,问题根源在于环境配置。需要检查用户的环境是否激活了正确的Python环境,比如使用conda时是否激活了对应的环境。有时候用户可能安装了包到全局环境,而当前使用的是虚拟环境,导致包未找到。 另外,安装onnxruntime时要注意版本兼容性,可能需要指定版本以避免冲突。安装完成后,建议用户重新运行代码,验证是否解决。如果问题依旧,可能需要检查其他依赖或考虑升级Ultralytics库。最后,确保导出时的参数正确,比如输入形状是否符合模型要求,但根据错误信息,当前问题主要还是依赖缺失。</think>根据错误信息和代码分析,问题核心在于缺少ONNX依赖库。以下是逐步解决方案: $\boxed{\text{错误原因分析}}$ 1. 关键错误提示:`ModuleNotFoundError: No module named 'onnx'` 2. 系统检测到未安装Ultralytics要求的依赖项:`['onnx>=1.12.0', 'onnxslim', 'onnxruntime']` 3. 自动更新失败:可能由于网络问题导致无法自动安装 $\boxed{\text{解决方案}}$ 1. $\textcolor{blue}{\text{手动安装缺失的依赖}}$ ```bash # 激活你的conda环境(如果是conda环境) conda activate yolov8_2 # 安装核心依赖 pip install onnx>=1.12.0 onnxslim onnxruntime # 推荐额外安装protobuf(避免后续潜在错误) pip install protobuf==3.20.* ``` 2. $\textcolor{blue}{\text{验证安装}}$ ```python # 在Python中执行以下命令验证 import onnx import onnxruntime print(onnx.__version__) # 应显示 >=1.12.0 ``` 3. $\textcolor{blue}{\text{修改后的代码验证}}$ ```python from ultralytics import YOLO # 加载模型时显式指定输入尺寸(增强兼容性) model = YOLO("best.pt", task="detect") # 明确指定任务类型 # 导出时添加动态维度支持 success = model.export( format="onnx", batch=1, dynamic=True, # 添加动态维度支持 simplify=True # 启用onnx-simplifier ) ``` $\boxed{\text{注意事项}}$ 1. 确保使用的Python环境与conda环境`yolov8_2`致 2. 如果使用GPU加速,需安装`onnxruntime-gpu`而非`onnxruntime` 3. 输入尺寸`(1, 3, 640, 640)`需要与原始训练配置致 4. 输出层维度`(1, 5, 8400)`符合YOLOv8的默认输出结构,无需修改 $\boxed{\text{附加建议}}$ 1. 升级Ultralytics库至最新版本: ```bash pip install ultralytics --upgrade ``` 2. 检查CUDA/cuDNN版本与onnxruntime的兼容性 3. 如果导出仍失败,尝试添加`opset=12`参数: ```python success = model.export(format="onnx", batch=1, opset=12) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值