目标检测(二)——Two-Stage——Fast R-CNN

FastR-CNN是针对R-CNN计算效率低下的问题进行的优化,它引入了ROI池化层,使得特征提取只进行一次,候选框共享特征图,减少了计算开销。通过合并分类和回归损失,FastR-CNN能够同时进行对象识别和边界框的精调,提高了检测速度和性能。ROI池化层确保了不同大小的候选框能转换为固定长度的特征向量,为全连接层提供输入。
摘要由CSDN通过智能技术生成

一、前言

上一节说的到R-CNN可以看出:
它的计算量很大,结构也分散,主要体现在:需要针对Selective Search方法生成的2000个候选框逐一进行计算、之后的分类和回归也是分开训练计算的。在训练的过程中,提取的特征需要先存储在硬盘上,然后训练SVM分类模型,最后训练bounding box回归模型,测试的过程,也是相类似,特征提取之后,先进行SVM分类,然后进行回归目标的准确位置,整个计算过程需要很大的开销。

在R-CNN的目标检测网络提出之后,针对R-CNN 的特征提取网络要求输入图像为固定尺寸以及每个候选框都需要进行重复卷积操作,何恺明等人提出了一种新的池化方法,即空间金字塔采样,SPP-Net(详细可以:参考博客

二、Fast R-CNN

Fast R-CNN针对R-CNN的存在的不足进行改进:
(1)提出 ROI pooling 层
(2)合并分类和回归的操作:分类即判断类别,回归做的是bounding box的拟合
在Fast R-CNN中是将这个两个损失合并在一起,进行反向传播优化

在这里插入图片描述

Fast R-CNN整体的流程:
(1)首先将图像和图像上生成的一系列候选框作为输入
(2)图像经过一系列的卷积池化操作,得到feature map;
(3)根据候选框在feature map中找到对应的感兴趣区域(特征区域);
(4)利用ROl池化层,将每个特征区域,输出固定长度的特征向量,传递给全连接层;
(5)经过若干全连接层后,分成两个分支,一个分支通过softmax进行分类,另一个分支进行目标框的拟合。
在这里插入图片描述

讲解其中的ROI池化层:
与SPP-Net类似,在最后一个卷积层之后,加入ROl 池化层,从上面的整体流程可以知道,Fast R-CNN也是对整个图像进行一次卷积运算,所有的候选框共享一个feature map。对于每个候选框,通过映射关系在feature map中找到其对应的感兴趣区域(ROI,Region Of Interest)。在每个感兴趣区域划分固定尺寸的均匀网格(例如4*4,相当于单层的SPP),所以每个感兴趣区域经过ROI池化之后输出的特征图具有相同的尺寸,之后就可以传递给全连接层(FC)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值