本节为高等数学复习笔记的第七部分,多元函数微分学(1),主要包括:多元微分法求多元偏导数 。
1. 多元微分法:多元求偏导
( 1 ) f ( x , y ) , 固 定 一 个 变 量 , 对 另 一 个 变 量 求 导 , 即 (1)f(x,y),固定一个变量,对另一个变量求导,即 (1)f(x,y),固定一个变量,对另一个变量求导,即: ∂ f ( x , y ) ∂ x = f x ′ ( x , y ) \frac{\partial f(x,y)}{\partial x}=f'_x(x,y) ∂x∂f(x,y)=fx′(x,y), ∂ f ( x , y ) ∂ y = f y ′ ( x , y ) \frac{\partial f(x,y)}{\partial y}=f'_y(x,y) ∂y∂f(x,y)=fy′(x,y)
( 2 ) 链 式 求 导 (2)链式求导 (2)链式求导:
z = f ( u , v , w ) z=f(u,v,w) z=f(u,v,w), u = u ( x , y ) u=u(x,y) u=u(x,y), v = v ( x ) v=v(x) v=v(x), w = w ( y ) w=w(y) w=w(y), 则 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x 则\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x} 则∂x∂z=∂u∂z⋅∂x∂u+∂v∂z⋅∂x∂v
( 3 ) 高 阶 偏 导 数 (3)高阶偏导数 (3)高阶偏导数:
二 阶 偏 导 二阶偏导 二阶偏导: ∂ ( ∂ z ∂ x ) ∂ x = ∂ 2 z ∂ x \frac{\partial(\frac{\partial z}{\partial x})}{\partial x}=\frac{\partial^2z }{\partial x} ∂x∂(∂x∂z)=∂x∂2z
二 阶 混 合 偏 导 二阶混合偏导 二阶混合偏导: ∂ ( ∂ z ∂ x ) ∂ y = ∂ 2 z ∂ x ∂ y \frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial^2z }{\partial x\partial y} ∂y∂(∂x∂z)=∂x∂y∂2z
e
g
1
(
显
函
数
)
.
eg1(显函数).
eg1(显函数).
设
z
=
f
(
e
x
s
i
n
y
,
x
2
+
y
2
)
,
其
中
f
具
有
设z=f(e^xsiny,x^2+y^2),其中f具有
设z=f(exsiny,x2+y2),其中f具有
二
阶
连
续
偏
导
数
二阶连续偏导数
二阶连续偏导数,
求
∂
2
x
∂
x
∂
y
求\frac{\partial^2x}{\partial x\partial y}
求∂x∂y∂2x。
解
:
解:
解:
∂
z
∂
x
=
e
x
s
i
n
y
f
1
′
+
2
x
f
2
′
\frac{\partial z}{\partial x}=e^xsinyf_1'+2xf_2'
∂x∂z=exsinyf1′+2xf2′,
∂ 2 x ∂ x ∂ y = ∂ ( ∂ z ∂ x ) ∂ y = ∂ ( f 1 ′ e x s i n y ) ∂ y + ∂ ( f 2 ′ ⋅ 2 x ) ∂ y \frac{\partial^2x}{\partial x\partial y}=\frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial(f_1'e^xsiny)}{\partial y}+\frac{\partial(f_2'\cdot 2x)}{\partial y} ∂x∂y∂2x=∂y∂(∂x∂z)=∂y∂(f1′exsiny)+∂y∂(f2′⋅2x) = ∂ f 1 ′ ∂ y ⋅ e x s i n y + f 1 ′ e x c o s y + 2 x ∂ f 2 ′ ∂ y =\frac{\partial f_1'}{\partial y}\cdot e^xsiny+f_1'e^xcosy+2x\frac{\partial f_2'}{\partial y} =∂y∂f1′⋅exsiny+f1′excosy+2x∂y∂f2′,
又
∂
f
1
′
∂
y
=
f
11
′
′
⋅
e
x
c
o
s
y
+
f
12
′
′
⋅
2
y
又\frac{\partial f_1'}{\partial y}=f_{11}''\cdot e^xcosy+f_{12}''\cdot 2y
又∂y∂f1′=f11′′⋅excosy+f12′′⋅2y,
∂
f
2
′
∂
y
=
f
21
′
′
⋅
e
x
c
o
s
y
+
f
22
′
′
⋅
2
y
\ \ \ \ \frac{\partial f_2'}{\partial y}=f_{21}''\cdot e^xcosy+f_{22}''\cdot 2y
∂y∂f2′=f21′′⋅excosy+f22′′⋅2y,
∴ ∂ 2 x ∂ x ∂ y = f 11 ′ ′ e 2 x s i n y c o s y + 2 e x ( y s i n y + x c o s y ) f 12 ′ ′ \therefore \frac{\partial^2x}{\partial x\partial y}=f_{11}''e^{2x}sinycosy+2e^x(ysiny+xcosy)f_{12}'' ∴∂x∂y∂2x=f11′′e2xsinycosy+2ex(ysiny+xcosy)f12′′ + 4 x y f 22 ′ ′ + f 1 ′ e x c o s y +4xyf_{22}''+f_1'e^xcosy +4xyf22′′+f1′excosy。
e g 2 ( 隐 函 数 ) . eg2(隐函数). eg2(隐函数). 设 z = z ( x , y ) 由 方 程 F ( x + z y , y + z x ) 确 定 设z=z(x,y)由方程F(x+\frac zy,y+\frac zx)确定 设z=z(x,y)由方程F(x+yz,y+xz)确定, 其 中 F 有 连 续 偏 导 数 其中F有连续偏导数 其中F有连续偏导数, 求 : x ⋅ ∂ z ∂ x + y ⋅ ∂ z ∂ y 求:x\cdot \frac{\partial z}{\partial x}+y\cdot \frac{\partial z}{\partial y} 求:x⋅∂x∂z+y⋅∂y∂z.
解
:
解:
解:
方
法
一
:
将
方
程
两
边
分
别
对
x
,
y
求
偏
导
数
得
方法一:将方程两边分别对x,y求偏导数得
方法一:将方程两边分别对x,y求偏导数得:
1
)
F
1
′
(
1
+
1
y
∂
z
∂
x
)
+
F
2
′
(
−
z
x
2
+
1
x
∂
z
∂
x
)
=
0
1)F_1'(1+\frac1y\frac{\partial z}{\partial x})+F_2'(-\frac{z}{x^2}+\frac1x\frac{\partial z}{\partial x})=0
1)F1′(1+y1∂x∂z)+F2′(−x2z+x1∂x∂z)=0
⟹
\Longrightarrow
⟹
x F 1 ′ + y F 2 ′ x y ∂ z ∂ x = z x 2 F 2 ′ − F 1 ′ \frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial x}=\frac{z}{x^2}F_2'-F_1' xyxF1′+yF2′∂x∂z=x2zF2′−F1′
2 ) F 1 ′ ( − z y 2 + 1 y ∂ z ∂ y ) + F 2 ′ ( 1 + 1 x ∂ z ∂ y ) = 0 2)F_1'(-\frac{z}{y^2}+\frac1y\frac{\partial z}{\partial y})+F_2'(1+\frac1x\frac{\partial z}{\partial y})=0 2)F1′(−y2z+y1∂y∂z)+F2′(1+x1∂y∂z)=0 ⟹ \Longrightarrow ⟹
x
F
1
′
+
y
F
2
′
x
y
∂
z
∂
y
=
z
y
2
F
1
′
−
F
2
′
\frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial y}=\frac{z}{y^2}F_1'-F_2'
xyxF1′+yF2′∂y∂z=y2zF1′−F2′
⟹
\Longrightarrow
⟹
∂
z
∂
x
=
y
z
x
F
2
′
−
x
y
F
1
′
x
F
1
′
+
y
F
2
′
\frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'}
∂x∂z=xF1′+yF2′xyzF2′−xyF1′,
∂
z
∂
y
=
x
z
y
F
1
′
−
x
y
F
2
′
x
F
1
′
+
y
F
2
′
\frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'}
∂y∂z=xF1′+yF2′yxzF1′−xyF2′
⟹
\Longrightarrow
⟹
x
∂
z
∂
x
+
y
∂
z
∂
x
=
z
−
x
y
x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy
x∂x∂z+y∂x∂z=z−xy
方
法
二
:
方法二:
方法二:
对
方
程
全
微
分
,
F
1
′
⋅
d
(
x
+
z
y
)
+
F
2
′
⋅
d
(
y
+
z
x
)
=
0
对方程全微分,F_1'\cdot d(x+\frac zy)+F_2'\cdot d(y+\frac zx)=0
对方程全微分,F1′⋅d(x+yz)+F2′⋅d(y+xz)=0
有 F 1 ′ ⋅ ( d x + y d z − z d y y 2 ) + F 2 ′ ⋅ ( d y + x d z − z d x x 2 ) = 0 有F_1'\cdot(dx+\frac{ydz-zdy}{y^2})+F_2'\cdot(dy+\frac{xdz-zdx}{x^2})=0 有F1′⋅(dx+y2ydz−zdy)+F2′⋅(dy+x2xdz−zdx)=0
有
:
有:
有:
(
F
1
′
1
y
+
F
2
′
1
x
)
d
z
=
(
−
F
1
′
+
z
x
2
F
2
′
)
d
x
+
(
−
F
2
′
+
z
y
2
F
1
′
)
d
y
(F_1'\frac1y+F_2'\frac1x)dz=(-F_1'+\frac z{x^2}F_2')dx+(-F_2'+\frac z{y^2}F_1')dy
(F1′y1+F2′x1)dz=(−F1′+x2zF2′)dx+(−F2′+y2zF1′)dy
两
边
同
乘
x
y
两边同乘xy
两边同乘xy:
(
x
F
1
′
+
y
F
2
′
)
d
z
=
(
−
x
y
F
1
′
+
y
z
x
F
2
′
)
d
x
+
(
−
x
y
F
2
′
+
x
z
y
F
1
′
)
d
y
(xF_1'+yF_2')dz=(-xyF_1'+\frac {yz}{x}F_2')dx+(-xyF_2'+\frac {xz}{y}F_1')dy
(xF1′+yF2′)dz=(−xyF1′+xyzF2′)dx+(−xyF2′+yxzF1′)dy
⟹
\Longrightarrow
⟹
∂
z
∂
x
=
y
z
x
F
2
′
−
x
y
F
1
′
x
F
1
′
+
y
F
2
′
\frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'}
∂x∂z=xF1′+yF2′xyzF2′−xyF1′,
∂
z
∂
y
=
x
z
y
F
1
′
−
x
y
F
2
′
x
F
1
′
+
y
F
2
′
\frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'}
∂y∂z=xF1′+yF2′yxzF1′−xyF2′
⟹
\Longrightarrow
⟹
x
∂
z
∂
x
+
y
∂
z
∂
x
=
z
−
x
y
x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy
x∂x∂z+y∂x∂z=z−xy
欢迎扫描二维码关注微信公众号 深度学习与数学 [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]

- 多元函数微分学1【多元微分法:多元求偏导】&spm=1001.2101.3001.5002&articleId=106157279&d=1&t=3&u=5c0cc9b957c94de38986cdffc5ddb369)
1万+

被折叠的 条评论
为什么被折叠?



