高等数学(七)- 多元函数微分学(1)【多元微分法:多元求偏导】

本节为高等数学复习笔记的第七部分,多元函数微分学(1),主要包括:多元微分法求多元偏导数 。

1. 多元微分法:多元求偏导

   ( 1 ) f ( x , y ) , 固 定 一 个 变 量 , 对 另 一 个 变 量 求 导 , 即 (1)f(x,y),固定一个变量,对另一个变量求导,即 1f(x,y) ∂ f ( x , y ) ∂ x = f x ′ ( x , y ) \frac{\partial f(x,y)}{\partial x}=f'_x(x,y) xf(x,y)=fx(x,y) ∂ f ( x , y ) ∂ y = f y ′ ( x , y ) \frac{\partial f(x,y)}{\partial y}=f'_y(x,y) yf(x,y)=fy(x,y)

( 2 ) 链 式 求 导 (2)链式求导 2

   z = f ( u , v , w ) z=f(u,v,w) z=f(u,v,w) u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x ) v=v(x) v=v(x) w = w ( y ) w=w(y) w=w(y) 则 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x 则\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x} xz=uzxu+vzxv

( 3 ) 高 阶 偏 导 数 (3)高阶偏导数 3

   二 阶 偏 导 二阶偏导 ∂ ( ∂ z ∂ x ) ∂ x = ∂ 2 z ∂ x \frac{\partial(\frac{\partial z}{\partial x})}{\partial x}=\frac{\partial^2z }{\partial x} x(xz)=x2z

   二 阶 混 合 偏 导 二阶混合偏导 ∂ ( ∂ z ∂ x ) ∂ y = ∂ 2 z ∂ x ∂ y \frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial^2z }{\partial x\partial y} y(xz)=xy2z

e g 1 ( 显 函 数 ) . eg1(显函数). eg1(). 设 z = f ( e x s i n y , x 2 + y 2 ) , 其 中 f 具 有 设z=f(e^xsiny,x^2+y^2),其中f具有 z=f(exsiny,x2+y2)f 二 阶 连 续 偏 导 数 二阶连续偏导数 求 ∂ 2 x ∂ x ∂ y 求\frac{\partial^2x}{\partial x\partial y} xy2x
   解 : 解: ∂ z ∂ x = e x s i n y f 1 ′ + 2 x f 2 ′ \frac{\partial z}{\partial x}=e^xsinyf_1'+2xf_2' xz=exsinyf1+2xf2

   ∂ 2 x ∂ x ∂ y = ∂ ( ∂ z ∂ x ) ∂ y = ∂ ( f 1 ′ e x s i n y ) ∂ y + ∂ ( f 2 ′ ⋅ 2 x ) ∂ y \frac{\partial^2x}{\partial x\partial y}=\frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial(f_1'e^xsiny)}{\partial y}+\frac{\partial(f_2'\cdot 2x)}{\partial y} xy2x=y(xz)=y(f1exsiny)+y(f22x) = ∂ f 1 ′ ∂ y ⋅ e x s i n y + f 1 ′ e x c o s y + 2 x ∂ f 2 ′ ∂ y =\frac{\partial f_1'}{\partial y}\cdot e^xsiny+f_1'e^xcosy+2x\frac{\partial f_2'}{\partial y} =yf1exsiny+f1excosy+2xyf2

   又 ∂ f 1 ′ ∂ y = f 11 ′ ′ ⋅ e x c o s y + f 12 ′ ′ ⋅ 2 y 又\frac{\partial f_1'}{\partial y}=f_{11}''\cdot e^xcosy+f_{12}''\cdot 2y yf1=f11excosy+f122y
        ∂ f 2 ′ ∂ y = f 21 ′ ′ ⋅ e x c o s y + f 22 ′ ′ ⋅ 2 y \ \ \ \ \frac{\partial f_2'}{\partial y}=f_{21}''\cdot e^xcosy+f_{22}''\cdot 2y     yf2=f21excosy+f222y

   ∴ ∂ 2 x ∂ x ∂ y = f 11 ′ ′ e 2 x s i n y c o s y + 2 e x ( y s i n y + x c o s y ) f 12 ′ ′ \therefore \frac{\partial^2x}{\partial x\partial y}=f_{11}''e^{2x}sinycosy+2e^x(ysiny+xcosy)f_{12}'' xy2x=f11e2xsinycosy+2ex(ysiny+xcosy)f12 + 4 x y f 22 ′ ′ + f 1 ′ e x c o s y +4xyf_{22}''+f_1'e^xcosy +4xyf22+f1excosy


e g 2 ( 隐 函 数 ) . eg2(隐函数). eg2(). 设 z = z ( x , y ) 由 方 程 F ( x + z y , y + z x ) 确 定 设z=z(x,y)由方程F(x+\frac zy,y+\frac zx)确定 z=z(x,y)F(x+yz,y+xz) 其 中 F 有 连 续 偏 导 数 其中F有连续偏导数 F 求 : x ⋅ ∂ z ∂ x + y ⋅ ∂ z ∂ y 求:x\cdot \frac{\partial z}{\partial x}+y\cdot \frac{\partial z}{\partial y} xxz+yyz.

   解 : 解:
   方 法 一 : 将 方 程 两 边 分 别 对 x , y 求 偏 导 数 得 方法一:将方程两边分别对x,y求偏导数得 xy
1 ) F 1 ′ ( 1 + 1 y ∂ z ∂ x ) + F 2 ′ ( − z x 2 + 1 x ∂ z ∂ x ) = 0 1)F_1'(1+\frac1y\frac{\partial z}{\partial x})+F_2'(-\frac{z}{x^2}+\frac1x\frac{\partial z}{\partial x})=0 1F1(1+y1xz)+F2(x2z+x1xz)=0 ⟹ \Longrightarrow

   x F 1 ′ + y F 2 ′ x y ∂ z ∂ x = z x 2 F 2 ′ − F 1 ′ \frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial x}=\frac{z}{x^2}F_2'-F_1' xyxF1+yF2xz=x2zF2F1

2 ) F 1 ′ ( − z y 2 + 1 y ∂ z ∂ y ) + F 2 ′ ( 1 + 1 x ∂ z ∂ y ) = 0 2)F_1'(-\frac{z}{y^2}+\frac1y\frac{\partial z}{\partial y})+F_2'(1+\frac1x\frac{\partial z}{\partial y})=0 2F1(y2z+y1yz)+F2(1+x1yz)=0 ⟹ \Longrightarrow

   x F 1 ′ + y F 2 ′ x y ∂ z ∂ y = z y 2 F 1 ′ − F 2 ′ \frac{xF_1'+yF_2'}{xy}\frac{\partial z}{\partial y}=\frac{z}{y^2}F_1'-F_2' xyxF1+yF2yz=y2zF1F2
⟹ \Longrightarrow
   ∂ z ∂ x = y z x F 2 ′ − x y F 1 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'} xz=xF1+yF2xyzF2xyF1 ∂ z ∂ y = x z y F 1 ′ − x y F 2 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'} yz=xF1+yF2yxzF1xyF2
⟹ \Longrightarrow
   x ∂ z ∂ x + y ∂ z ∂ x = z − x y x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy xxz+yxz=zxy

   方 法 二 : 方法二:
   对 方 程 全 微 分 , F 1 ′ ⋅ d ( x + z y ) + F 2 ′ ⋅ d ( y + z x ) = 0 对方程全微分,F_1'\cdot d(x+\frac zy)+F_2'\cdot d(y+\frac zx)=0 F1d(x+yz)+F2d(y+xz)=0

   有 F 1 ′ ⋅ ( d x + y d z − z d y y 2 ) + F 2 ′ ⋅ ( d y + x d z − z d x x 2 ) = 0 有F_1'\cdot(dx+\frac{ydz-zdy}{y^2})+F_2'\cdot(dy+\frac{xdz-zdx}{x^2})=0 F1(dx+y2ydzzdy)+F2(dy+x2xdzzdx)=0

   有 : 有: :
( F 1 ′ 1 y + F 2 ′ 1 x ) d z = ( − F 1 ′ + z x 2 F 2 ′ ) d x + ( − F 2 ′ + z y 2 F 1 ′ ) d y (F_1'\frac1y+F_2'\frac1x)dz=(-F_1'+\frac z{x^2}F_2')dx+(-F_2'+\frac z{y^2}F_1')dy (F1y1+F2x1)dz=(F1+x2zF2)dx+(F2+y2zF1)dy

   两 边 同 乘 x y 两边同乘xy xy
( x F 1 ′ + y F 2 ′ ) d z = ( − x y F 1 ′ + y z x F 2 ′ ) d x + ( − x y F 2 ′ + x z y F 1 ′ ) d y (xF_1'+yF_2')dz=(-xyF_1'+\frac {yz}{x}F_2')dx+(-xyF_2'+\frac {xz}{y}F_1')dy (xF1+yF2)dz=(xyF1+xyzF2)dx+(xyF2+yxzF1)dy
⟹ \Longrightarrow
   ∂ z ∂ x = y z x F 2 ′ − x y F 1 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial x}=\frac{\frac{yz}{x}F_2'-xyF_1'}{xF_1'+yF_2'} xz=xF1+yF2xyzF2xyF1 ∂ z ∂ y = x z y F 1 ′ − x y F 2 ′ x F 1 ′ + y F 2 ′ \frac{\partial z}{\partial y}=\frac{\frac{xz}{y}F_1'-xyF_2'}{xF_1'+yF_2'} yz=xF1+yF2yxzF1xyF2
⟹ \Longrightarrow
   x ∂ z ∂ x + y ∂ z ∂ x = z − x y x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial x}=z-xy xxz+yxz=zxy


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值