YOLOv8最新改进系列:SAHI -专门针对小目标检测的推理-切片辅助超推理!小目标检测实战有效!上大分、遥遥领先了家人们!!!

YOLOv8最新改进系列

SAHI提出的论文戳这

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

截止到发稿时,B站YOLOv8最新改进系列的源码包,已更新了35种+损失函数的改进!自己排列组合2-4种后,不考虑位置已达8万种以上改进方法!考虑位置不同后可排列上百万种!!专注AI学术,关注B站博主:AI学术叫叫兽!

另外:新建了数据集推荐汇总栏目,一并放入系列改进的资料之中,已获取资料的朋友自行提取即可!遥遥领先!!

YOLOv8最新改进系列:YOLOv8最新改进系列:SAHI -专门针对小目标检测的推理-切片辅助超推理!小目标检测实战有效!上大分、遥遥领先了家人们!!!


一、SAHI概述

对象检测是迄今为止计算机视觉中最重要的应用领域。然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少。小目标物体的定义通常有两种方式。一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小目标。另外一种是相对尺度定义,即以物体在图像中的占比面积比例来判断是否为小目标,例如国际光学工程学会SPIE定义,若目标尺寸小于原图的0.12%则可以判定成小目标。
SAHI: Slicing Aided Hyper Inference(切片辅助超推理)通过图像切片的方式来检测小目标。SAHI检测过程可以描述为:通过滑动窗口将图像切分成若干区域,各个区域分别进行预测,同时也对整张图片进行推理。然后将各个区域的预测结果和整张图片的预测结果合并,最后用NMS(非极大值抑制)进行过滤。用动图表示该识别过程如下:
在这里插入图片描述

理论相关知识,点击论文链接自行详细阅读即可,在此不再赘述!

二、实验

2.1 找到系列改进资料中的报错解决文件

2.2 按照要求安装相关库即可

2.3 执行命令

`python SAHI-detect.py`

三、参数调优

在这里插入图片描述

这里决定着切片的大小和数量,根据自己的数据来调整。

以VisDrone2019数据集为例,在不同的参数下测试,如下所示:

请添加图片描述
3.1 长宽400

slice_height = 400,
slice_width = 400,
overlap_height_ratio = 0.05,
overlap_width_ratio = 0.05

请添加图片描述

3.2 长宽800

slice_height = 800,
slice_width = 800,
overlap_height_ratio = 0.05,
overlap_width_ratio = 0.05

请添加图片描述

3.3 长宽100

请添加图片描述
实际上参数的数值具有无限多,因此,在此篇博文仅举以上三种作为展示。

快点动手自己DIY吧!!!

干完收工!
关注B站:AI学术叫叫兽
从此走上科研快速路
遥遥领先同行!!!!

详细的改进教程以及源码,戳这!戳这!!戳这!!!B站:AI学术叫叫兽 源码在相簿的链接中,动态中也有链接,感谢支持!祝科研遥遥领先!

Sahi增强Yolov5是一种用于目标检测的技术。根据引用,在这篇文章中作者详细介绍了使用Sahi工具增强Yolov5模型的方法。Sahi是一个用于数据增强的Python库,可以帮助改善目标检测模型的性能。在这篇文章中,作者提供了两张原始图片和它们对应的标注文件txt,这些文件存放在名为"background"的文件夹下。增加的小目标(这里是人)以小图的形式存在,放在名为"crops"的文件夹下。这些图片和标注文件由train.txt和small.txt管理,可以通过shell脚本createTrain.sh生成。 具体来说,Sahi通过对原始图片进行一系列的变换和增强操作,生成新的训练数据集。这些增强操作可以包括随机剪裁、旋转、缩放、平移等。通过对训练数据集进行增强,可以提升模型的泛化能力,使其在各种不同场景下都能更好地检测目标。 总结来说,Sahi增强Yolov5是通过对原始图片进行一系列的变换和增强操作,生成新的训练数据集,以提升Yolov5模型的性能和泛化能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [小目标数据增强](https://blog.csdn.net/djstavaV/article/details/121646689)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值