AI人工智能领域多智能体系统:在智能教育中的应用实践

AI人工智能领域多智能体系统:在智能教育中的应用实践

关键词:AI人工智能、多智能体系统、智能教育、应用实践、教育技术

摘要:本文聚焦于AI人工智能领域的多智能体系统在智能教育中的应用实践。首先介绍了多智能体系统及智能教育的相关背景,阐述了文章的目的、范围、预期读者和文档结构。接着深入探讨了多智能体系统的核心概念与联系,包括原理和架构,并通过Mermaid流程图进行直观展示。详细讲解了核心算法原理,结合Python源代码说明具体操作步骤。分析了相关的数学模型和公式,并举例说明。通过项目实战展示了在智能教育中应用多智能体系统的具体实现,包括开发环境搭建、源代码实现与解读。探讨了多智能体系统在智能教育中的实际应用场景,推荐了相关的学习资源、开发工具框架和论文著作。最后总结了未来发展趋势与挑战,并提供了常见问题解答和扩展阅读参考资料。

1. 背景介绍

1.1 目的和范围

本文章的主要目的是深入探讨AI人工智能领域的多智能体系统在智能教育中的应用实践。通过详细介绍多智能体系统的原理、算法、数学模型等方面,结合实际案例展示其在智能教育中的具体应用,为教育工作者、技术开发者和相关研究人员提供全面且深入的参考。范围涵盖了多智能体系统的基本概念、核心算法、在智能教育中的应用场景以及相关的工具和资源推荐等方面。

1.2 预期读者

本文的预期读者包括教育领域的工作者,如教师、教育研究者,他们可以从中了解如何利用多智能体系统提升教学效果和学生学习体验;计算机科学和人工智能领域的技术开发者,可获取多智能体系统的技术实现细节和应用案例;以及对智能教育和多智能体系统感兴趣的学生和爱好者,帮助他们建立相关知识体系。

1.3 文档结构概述

本文共分为十个部分。第一部分为背景介绍,阐述文章的目的、范围、预期读者和文档结构,并给出术语表。第二部分介绍多智能体系统的核心概念与联系,包括原理和架构,并用Mermaid流程图展示。第三部分讲解核心算法原理和具体操作步骤,结合Python源代码进行说明。第四部分分析相关的数学模型和公式,并举例说明。第五部分通过项目实战展示多智能体系统在智能教育中的具体实现,包括开发环境搭建、源代码实现与解读。第六部分探讨多智能体系统在智能教育中的实际应用场景。第七部分推荐相关的学习资源、开发工具框架和论文著作。第八部分总结未来发展趋势与挑战。第九部分提供常见问题解答。第十部分给出扩展阅读和参考资料。

1.4 术语表

1.4.1 核心术语定义
  • AI人工智能(Artificial Intelligence):指让计算机系统能够模拟人类智能的技术和方法,包括学习、推理、解决问题等能力。
  • 多智能体系统(Multi - Agent System,MAS):由多个自主智能体组成的系统,这些智能体可以相互协作、通信和交互,以实现共同或各自的目标。
  • 智能教育(Intelligent Education):利用人工智能技术来优化教育过程、提高教学质量和学生学习效果的教育模式。
  • 智能体(Agent):在多智能体系统中,具有自主性、反应性、社会性和主动性等特性的实体,能够感知环境并采取行动。
1.4.2 相关概念解释
  • 自主性:智能体能够在没有外部直接干预的情况下,独立地决定自己的行为和决策。
  • 反应性:智能体能够感知环境的变化,并及时做出相应的反应。
  • 社会性:智能体能够与其他智能体进行交互和协作,以实现共同的目标。
  • 主动性:智能体能够主动地发起行动,以追求自己的目标。
1.4.3 缩略词列表
  • MAS:Multi - Agent System(多智能体系统)
  • AI:Artificial Intelligence(人工智能)

2. 核心概念与联系

核心概念原理

多智能体系统的核心原理基于多个智能体的协作和交互。每个智能体都有自己的目标、知识和能力,它们通过感知环境、与其他智能体通信和协作来实现共同的目标。智能体可以是软件程序、机器人或其他具有一定智能的实体。

在智能教育中,多智能体系统可以包含多种类型的智能体,例如学生智能体、教师智能体、教学资源智能体等。学生智能体可以根据学生的学习情况和偏好,提供个性化的学习建议和指导;教师智能体可以辅助教师进行教学管理和学生评估;教学资源智能体可以提供丰富的教学资料和学习资源。

架构的文本示意图

多智能体系统的架构通常包括以下几个部分:

  • 智能体层:包含多个智能体,每个智能体具有自己的功能和职责。
  • 通信层:负责智能体之间的通信和信息交换,确保智能体能够相互协作。
  • 环境层:智能体所处的环境,包括物理环境和虚拟环境,智能体通过感知环境来获取信息。
  • 协调层:负责协调智能体之间的行为和决策,避免冲突和矛盾。

以下是一个简单的文本示意图:

+-----------------+
|   协调层        |
+-----------------+
|   通信层        |
+-----------------+
|   智能体层      |
|  +---------+    |
|  |  智能体1 |    |
|  +---------+    |
|  +---------+    |
|  |  智能体2 |    |
|  +---------+    |
|  ...            |
+-----------------+
|   环境层        |
+-----------------+

Mermaid流程图

协调层
通信层
智能体层
环境层
智能体1
智能体2
智能体3

这个流程图展示了多智能体系统的基本架构,协调层负责协调智能体之间的行为,通信层实现智能体之间的通信,智能体层包含多个智能体,环境层是智能体所处的环境。

3. 核心算法原理 & 具体操作步骤

核心算法原理

在多智能体系统中,一个常用的算法是基于强化学习的算法,例如Q - learning。Q - learning是一种无模型的强化学习算法,它通过学习一个Q函数来确定智能体在不同状态下采取不同动作的价值。

Q函数 Q ( s , a ) Q(s, a) Q(s,a) 表示智能体在状态 s s s 下采取动作 a a a 的预期累积奖励。智能体的目标是最大化这个Q函数的值。Q - learning的更新公式如下:

Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + 1 + γ max ⁡ a Q ( s t + 1 , a ) − Q ( s t , a t ) ] Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)] Q(st,at)Q(st,at)+α[rt+1+γamaxQ(st+1,a)Q(st,at)]

其中:

  • s t s_t st 是当前状态
  • a t a_t at 是当前采取的动作
  • r t + 1 r_{t+1} rt+1 是执行动作 a t a_t at 后获得的即时奖励
  • s t + 1 s_{t+1} st+1 是执行动作 a t a_t at 后转移到的下一个状态
  • α \alpha α 是学习率,控制每次更新的步长
  • γ \gamma γ 是折扣因子,用于权衡即时奖励和未来奖励

具体操作步骤及Python源代码

以下是一个简单的Python代码示例,展示了如何使用Q - learning算法实现一个简单的多智能体系统:

import numpy as np

# 定义环境
class Environment:
    def __init__(self):
        self.num_states = 5
        self.num_actions = 2
        self.current_state = np.random.randint(0, self.num_states)

    def step(self, action):
        # 简单的状态转移规则
        if action == 0:
            self.current_state = max(0, self.current_state - 1)
        else:
            self.current_state = min(self.num_states - 1, self.current_state + 1)

        # 简单的奖励规则
        if self.current_state == self.num_states - 1:
            reward = 1
        else:
            reward = 0

        return self.current_state, reward

# 定义智能体
class Agent:
    def __init__(self, num_states, num_actions, alpha=0.1, gamma=0.9):
        self.num_states = num_states
        self.num_actions = num_actions
        self.alpha = alpha
        self.gamma = gamma
        self.Q = np.zeros((num_states, num_actions))

    def choose_action(self, state):
        # 简单的贪心策略
        if np.random.uniform(0, 1) < 0.1:
            action = np.random.randint(0, self.num_actions)
        else:
            action = np.argmax(self.Q[state, :])
        return action

    def update_Q(self, state, action, next_state, reward):
        max_Q_next = np.max(self.Q[next_state, :])
        self.Q[state, action] = self.Q[state, action] + self.alpha * (reward + self.gamma * max_Q_next - self.Q[state, action])

# 主程序
if __name__ == "__main__":
    env = Environment()
    agent = Agent(env.num_states, env.num_actions)

    num_episodes = 1000
    for episode in range(num_episodes):
        state = env.current_state
        done = False
        while not done:
            action = agent.choose_action(state)
            next_state, reward = env.step(action)
            agent.update_Q(state, action, next_state, reward)
            state = next_state
            if reward == 1:
                done = True

    print("Final Q - values:")
    print(agent.Q)

代码解释

  1. 环境类(Environment):定义了环境的状态和动作空间,以及状态转移和奖励规则。
  2. 智能体类(Agent):包含Q表的初始化、动作选择和Q表更新的方法。
  3. 主程序:创建环境和智能体,进行多次训练迭代,每个迭代中智能体根据当前状态选择动作,与环境交互获得奖励和下一个状态,然后更新Q表。

4. 数学模型和公式 & 详细讲解 & 举例说明

数学模型和公式

Q - learning公式

如前面所述,Q - learning的更新公式为:

Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + 1 + γ max ⁡ a Q ( s t + 1 , a ) − Q ( s t , a t ) ] Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)] Q(st,at)Q(st,at)+α[rt+1+γamaxQ(st+1,a)Q(st,at)]

详细讲解

  • 学习率 α \alpha α:控制每次更新的步长。如果 α \alpha α 较大,智能体更新Q值的速度较快,但可能会导致不稳定;如果 α \alpha α 较小,更新速度较慢,但会更稳定。
  • 折扣因子 γ \gamma γ:用于权衡即时奖励和未来奖励。 γ \gamma γ 越接近1,智能体越注重未来的奖励; γ \gamma γ 越接近0,智能体越注重即时奖励。

举例说明

假设我们有一个简单的环境,状态空间 S = { s 1 , s 2 , s 3 } S = \{s_1, s_2, s_3\} S={s1,s2,s3},动作空间 A = { a 1 , a 2 } A = \{a_1, a_2\} A={a1,a2}。初始时, Q ( s 1 , a 1 ) = 0 Q(s_1, a_1) = 0 Q(s1,a1)=0 Q ( s 1 , a 2 ) = 0 Q(s_1, a_2) = 0 Q(s1,a2)=0

智能体在状态 s 1 s_1 s1 选择动作 a 1 a_1 a1,转移到状态 s 2 s_2 s2,获得即时奖励 r = 1 r = 1 r=1。假设 α = 0.1 \alpha = 0.1 α=0.1 γ = 0.9 \gamma = 0.9 γ=0.9

当前状态 s t = s 1 s_t = s_1 st=s1,动作 a t = a 1 a_t = a_1 at=a1,下一个状态 s t + 1 = s 2 s_{t+1} = s_2 st+1=s2,奖励 r t + 1 = 1 r_{t+1} = 1 rt+1=1

首先计算 max ⁡ a Q ( s t + 1 , a ) \max_{a} Q(s_{t+1}, a) maxaQ(st+1,a),假设 Q ( s 2 , a 1 ) = 0.2 Q(s_2, a_1) = 0.2 Q(s2,a1)=0.2 Q ( s 2 , a 2 ) = 0.3 Q(s_2, a_2) = 0.3 Q(s2,a2)=0.3,则 max ⁡ a Q ( s t + 1 , a ) = 0.3 \max_{a} Q(s_{t+1}, a)= 0.3 maxaQ(st+1,a)=0.3

然后根据Q - learning公式更新 Q ( s 1 , a 1 ) Q(s_1, a_1) Q(s1,a1)

Q ( s 1 , a 1 ) ← Q ( s 1 , a 1 ) + α [ r t + 1 + γ max ⁡ a Q ( s t + 1 , a ) − Q ( s 1 , a 1 ) ] = 0 + 0.1 × ( 1 + 0.9 × 0.3 − 0 ) = 0 + 0.1 × ( 1 + 0.27 ) = 0 + 0.1 × 1.27 = 0.127 \begin{align*} Q(s_1, a_1) &\leftarrow Q(s_1, a_1) + \alpha [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_1, a_1)]\\ &= 0 + 0.1\times(1 + 0.9\times0.3 - 0)\\ &= 0 + 0.1\times(1 + 0.27)\\ &= 0 + 0.1\times1.27\\ &= 0.127 \end{align*} Q(s1,a1)Q(s1,a1)+α[rt+1+γamaxQ(st+1,a)Q(s1,a1)]=0+0.1×(1+0.9×0.30)=0+0.1×(1+0.27)=0+0.1×1.27=0.127

这样, Q ( s 1 , a 1 ) Q(s_1, a_1) Q(s1,a1) 的值就更新为0.127。

5. 项目实战:代码实际案例和详细解释说明

5.1 开发环境搭建

操作系统

可以选择Windows、Linux或macOS等主流操作系统。

编程语言和库
  • Python:选择Python 3.x版本,它是一种易于学习和使用的编程语言,并且有丰富的库支持。
  • NumPy:用于数值计算,在多智能体系统中可以方便地处理矩阵和数组。
  • Matplotlib:用于数据可视化,可以将智能体的学习过程和结果进行可视化展示。

可以使用以下命令安装所需的库:

pip install numpy matplotlib

5.2 源代码详细实现和代码解读

以下是一个更复杂的多智能体系统在智能教育中的应用示例,模拟学生智能体和教师智能体的交互:

import numpy as np
import matplotlib.pyplot as plt

# 定义学生智能体
class StudentAgent:
    def __init__(self, num_topics, learning_rate=0.1, discount_factor=0.9):
        self.num_topics = num_topics
        self.learning_rate = learning_rate
        self.discount_factor = discount_factor
        self.knowledge_level = np.zeros(num_topics)
        self.Q = np.zeros((num_topics, 2))  # 2 actions: study, relax

    def choose_action(self, topic):
        if np.random.uniform(0, 1) < 0.1:
            action = np.random.randint(0, 2)
        else:
            action = np.argmax(self.Q[topic, :])
        return action

    def update_knowledge(self, topic, action):
        if action == 0:  # study
            self.knowledge_level[topic] = min(1, self.knowledge_level[topic] + 0.1)
        else:  # relax
            self.knowledge_level[topic] = max(0, self.knowledge_level[topic] - 0.05)

    def update_Q(self, topic, action, next_topic, reward):
        max_Q_next = np.max(self.Q[next_topic, :])
        self.Q[topic, action] = self.Q[topic, action] + self.learning_rate * (reward + self.discount_factor * max_Q_next - self.Q[topic, action])

# 定义教师智能体
class TeacherAgent:
    def __init__(self, num_topics):
        self.num_topics = num_topics

    def assign_topic(self, student_knowledge):
        # 选择学生知识水平最低的主题
        return np.argmin(student_knowledge)

    def evaluate(self, student_knowledge, topic):
        if student_knowledge[topic] > 0.8:
            reward = 1
        else:
            reward = -1
        return reward

# 主程序
if __name__ == "__main__":
    num_topics = 5
    student = StudentAgent(num_topics)
    teacher = TeacherAgent(num_topics)

    num_episodes = 100
    knowledge_history = []

    for episode in range(num_episodes):
        topic = teacher.assign_topic(student.knowledge_level)
        action = student.choose_action(topic)
        student.update_knowledge(topic, action)
        next_topic = teacher.assign_topic(student.knowledge_level)
        reward = teacher.evaluate(student.knowledge_level, topic)
        student.update_Q(topic, action, next_topic, reward)
        knowledge_history.append(student.knowledge_level.copy())

    # 可视化知识水平的变化
    knowledge_history = np.array(knowledge_history)
    for i in range(num_topics):
        plt.plot(knowledge_history[:, i], label=f'Topic {i}')
    plt.xlabel('Episodes')
    plt.ylabel('Knowledge Level')
    plt.title('Student Knowledge Level Over Episodes')
    plt.legend()
    plt.show()

5.3 代码解读与分析

学生智能体(StudentAgent)
  • 初始化:初始化学生的知识水平和Q表。
  • 选择动作:根据贪心策略选择学习或放松的动作。
  • 更新知识:根据选择的动作更新学生的知识水平。
  • 更新Q表:使用Q - learning算法更新Q表。
教师智能体(TeacherAgent)
  • 分配主题:选择学生知识水平最低的主题。
  • 评估:根据学生在某个主题上的知识水平给予奖励。
主程序
  • 进行多次训练迭代,每次迭代中教师分配主题,学生选择动作,更新知识水平,教师评估并给予奖励,学生更新Q表。
  • 记录学生知识水平的变化,并使用Matplotlib进行可视化展示。

6. 实际应用场景

个性化学习

多智能体系统可以根据学生的学习情况、兴趣爱好和学习进度,为每个学生提供个性化的学习计划和资源推荐。学生智能体可以实时感知学生的学习状态,与教学资源智能体协作,获取适合学生的学习材料;教师智能体可以根据学生的学习表现,调整教学策略和指导方式。

智能辅导

智能体可以作为虚拟辅导老师,为学生提供实时的辅导和答疑。当学生遇到问题时,学生智能体可以将问题发送给教师智能体或其他专业智能体,获取解决方案并反馈给学生。同时,智能体还可以对学生的学习过程进行监控和评估,及时发现学生的问题并提供针对性的建议。

教学管理

教师智能体可以协助教师进行教学管理,如课程安排、作业布置、学生考勤等。教师智能体可以与学生智能体和教学资源智能体进行交互,自动完成一些繁琐的教学管理任务,提高教学效率。

协作学习

多智能体系统可以支持学生之间的协作学习。学生智能体可以与其他学生智能体进行通信和协作,共同完成学习任务。教师智能体可以对学生的协作过程进行监控和指导,促进学生之间的合作和交流。

7. 工具和资源推荐

7.1 学习资源推荐

7.1.1 书籍推荐
  • 《多智能体系统:算法、博弈论和机器学习基础》:这本书全面介绍了多智能体系统的理论和算法,包括博弈论、机器学习等方面的内容,是学习多智能体系统的经典教材。
  • 《人工智能:一种现代的方法》:涵盖了人工智能的各个领域,包括多智能体系统,对多智能体系统的原理、算法和应用进行了详细的介绍。
  • 《智能教育:理论、技术与应用》:专门介绍了智能教育的相关理论和技术,包括多智能体系统在智能教育中的应用案例和实践经验。
7.1.2 在线课程
  • Coursera上的“Artificial Intelligence for Robotics”:该课程介绍了人工智能在机器人领域的应用,其中包括多智能体系统的相关内容,通过实际案例和编程作业帮助学生掌握多智能体系统的开发。
  • edX上的“Multi - Agent Systems”:由知名高校教授授课,系统地讲解了多智能体系统的理论和算法,提供了丰富的学习资源和讨论社区。
  • 中国大学MOOC上的“智能教育技术”:课程围绕智能教育的各个方面展开,包括多智能体系统在智能教育中的应用,适合教育工作者和技术开发者学习。
7.1.3 技术博客和网站
  • AI Stack Exchange:一个专门讨论人工智能技术的问答社区,其中有很多关于多智能体系统的问题和解答,可以帮助读者解决遇到的技术难题。
  • Towards Data Science:提供了大量关于人工智能和机器学习的技术文章,包括多智能体系统的最新研究成果和应用案例。
  • 智能教育技术网:专注于智能教育领域的技术和应用,分享了多智能体系统在智能教育中的实践经验和研究动态。

7.2 开发工具框架推荐

7.2.1 IDE和编辑器
  • PyCharm:一款专业的Python集成开发环境,具有代码编辑、调试、自动完成等功能,适合开发多智能体系统的Python代码。
  • Visual Studio Code:一款轻量级的代码编辑器,支持多种编程语言和插件,可通过安装Python扩展来进行多智能体系统的开发。
7.2.2 调试和性能分析工具
  • pdb:Python自带的调试器,可以帮助开发者调试多智能体系统的代码,定位问题和错误。
  • cProfile:Python的性能分析工具,可以分析代码的运行时间和内存使用情况,帮助开发者优化代码性能。
7.2.3 相关框架和库
  • Mesa:一个用于构建多智能体系统的Python框架,提供了丰富的工具和接口,方便开发者快速搭建多智能体系统。
  • JADE(Java Agent DEvelopment Framework):一个基于Java的多智能体系统开发框架,具有良好的跨平台性和可扩展性,适合开发复杂的多智能体系统。

7.3 相关论文著作推荐

7.3.1 经典论文
  • “Multi - Agent Systems: A Modern Approach to Distributed Artificial Intelligence”:该论文系统地介绍了多智能体系统的基本概念、理论和方法,是多智能体系统领域的经典之作。
  • “Q - learning”:首次提出了Q - learning算法,为强化学习在多智能体系统中的应用奠定了基础。
7.3.2 最新研究成果
  • 在ACM SIGKDD、AAAI、IJCAI等顶级学术会议上发表的关于多智能体系统在智能教育中的应用的最新研究论文,这些论文反映了该领域的最新研究动态和技术趋势。
7.3.3 应用案例分析
  • 一些关于多智能体系统在实际教育场景中的应用案例分析报告,如某学校使用多智能体系统实现个性化学习的案例,通过这些案例可以了解多智能体系统在实际应用中的效果和挑战。

8. 总结:未来发展趋势与挑战

未来发展趋势

更加智能化和个性化

多智能体系统在智能教育中的应用将更加注重智能化和个性化。智能体将能够更深入地了解学生的学习需求和特点,提供更加精准的学习建议和指导。同时,智能体之间的协作也将更加高效,能够更好地适应不同的教学场景和学生群体。

与其他技术的融合

多智能体系统将与其他人工智能技术,如深度学习、自然语言处理等进行更深入的融合。例如,结合深度学习技术可以实现更准确的学生学习状态评估;结合自然语言处理技术可以实现更自然的人机交互,提高学生的学习体验。

跨学科应用

多智能体系统在智能教育中的应用将不仅仅局限于教育领域,还将与其他学科,如心理学、社会学等进行跨学科应用。通过结合不同学科的知识和方法,可以更好地理解学生的学习行为和心理,提高智能教育的效果。

挑战

智能体的建模和设计

如何准确地建模和设计智能体的行为和决策机制是一个挑战。智能体需要能够适应复杂多变的教育环境,同时还要考虑与其他智能体的协作和交互,这对智能体的设计和开发提出了很高的要求。

数据隐私和安全

在智能教育中,多智能体系统需要处理大量的学生数据,如学习记录、个人信息等。如何保障这些数据的隐私和安全是一个重要的问题。需要采取有效的数据加密、访问控制等技术手段,防止数据泄露和滥用。

系统的可扩展性和可靠性

随着智能教育的发展,多智能体系统的规模和复杂度将不断增加。如何保证系统的可扩展性和可靠性,确保系统在大规模应用时能够稳定运行,是一个需要解决的问题。

9. 附录:常见问题与解答

多智能体系统在智能教育中的应用是否会取代教师?

不会。多智能体系统在智能教育中的应用主要是辅助教师进行教学,提供个性化的学习支持和教学管理服务。教师在教育过程中具有不可替代的作用,如情感交流、价值观引导等方面。

如何评估多智能体系统在智能教育中的效果?

可以从多个方面进行评估,如学生的学习成绩、学习兴趣、学习效率等。同时,还可以通过问卷调查、学生反馈等方式了解学生对多智能体系统的满意度和使用体验。

开发多智能体系统需要具备哪些技术基础?

需要具备一定的人工智能、机器学习、编程等技术基础。特别是对强化学习算法、Python编程等有一定的了解。同时,还需要了解多智能体系统的基本概念和架构。

多智能体系统在智能教育中的应用是否适用于所有学科?

多智能体系统在智能教育中的应用具有一定的通用性,但不同学科的特点和需求可能有所不同。在一些学科,如数学、计算机科学等,多智能体系统的应用可能更加容易实现和有效;而在一些人文社科类学科,可能需要结合学科特点进行适当的调整和优化。

10. 扩展阅读 & 参考资料

扩展阅读

  • 《智能教育的未来之路》:探讨了智能教育的发展趋势和未来方向,对多智能体系统在智能教育中的应用有更深入的思考和展望。
  • 《人工智能与教育变革》:分析了人工智能技术对教育领域的影响和变革,包括多智能体系统在教育中的应用案例和实践经验。

参考资料

  • 《多智能体系统导论》,作者:伍铁如等,科学出版社。
  • “Multi - Agent Systems for Intelligent Tutoring”,发表于《Journal of Educational Technology & Society》。
  • “Q - learning in Multi - Agent Systems”,发表于《Artificial Intelligence》。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值