相关性分析——肯德尔系数(Tau-a与Tau-b)

一、解释

肯德尔系数(Kendall's Tau)是一种用于测量两个变量之间相关性的非参数统计量。

与皮尔逊相关系数不同,肯德尔系数不依赖于变量的分布假设,因此在处理非正态分布或存在离群点的数据时更为稳健。

肯德尔相关也是基于数据对象的秩来计算两个变量之间的相关性,因此很适用于具有等级的变量(排序型),这点和斯皮尔曼系数相似。

肯德尔系数的取值范围在 -1 和 1 之间,数值越大表示相关性越强,数值为正表示正相关,数值为负表示负相关。

肯德尔系数主要有两种变体:肯德尔 Tau-a 和肯德尔 Tau-b。Tau-a 适用于没有平局情况的数据集,而 Tau-b 则修正了平局的影响,适用于更广泛的数据场景。

1. 肯德尔 Tau-a

肯德尔 Tau-a 的计算公式如下:

${\tau_{a}=\frac{C-D}{\binom{n}{2}}=\frac{2(C-D)}{n(n-1)}}$

其中:

C是符合顺序对的数量(Concordant Pairs)。

D是不符合顺序对的数量(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值