SAMformer的浅层轻量级Transformer模型

论文《Unlocking the Potential of Transformers in Time Series Forecasting》提出了一种名为SAMformer的浅层轻量级Transformer模型,旨在解决传统Transformer在时间序列预测中面临的训练不稳定和泛化能力差的问题。与传统的Informer模型相比,SAMformer在多个方面进行了改进和优化。下面我将从论文的数学公式、网络结构以及与传统Informer的区别三个方面进行讲解。

数学公式

论文中的数学公式主要围绕Transformer模型的构建和优化展开。在定义Transformer模型时,论文采用了简化的注意力机制和残差连接,其公式如下:

f(X)=[X+A(X)XWV​WO​]W

其中,A(X) 是注意力矩阵,定义为:

A(X)=softmax(dm​​XWQ​WK⊤​X⊤​)

这里,WQ​,WK​,WV​,WO​ 是模型的权重矩阵,dm​ 是模型的维度。注意力矩阵A(X) 描述了输入序列X中不同部分之间的关联强度。

在优化方面,论文采用了Sharpness-Aware Minimization (SAM) 来避免陷入尖锐的局部最小值,从而提高模型的泛化能力。SAM 的核心思想是在训练过程中不仅考虑损失函数的值,还考虑损失函数在其邻域内的平滑性(即“尖锐度”)。

网络结构

SAMformer的网络结构相对于传统的Transformer和Informer模型来说更加轻量级和高效。它主要包括以下几个关键组件:

  1. 浅层结构:与传统的深层Transformer模型不同,SAMformer采用了浅层结构,减少了模型参数和计算复杂度。

  2. 可逆实例归一化(RevIN):在网络中引入了可逆实例归一化,这有助于稳定训练过程,减少过拟合。

  3. 通道注意力(Channel-wise Attention):相比于传统的序列注意力(temporal attention),SAMformer采用了通道注意力机制,这在处理多变量时间序列时更加有效,因为它能够捕捉到不同特征通道之间的依赖关系。

  4. Sharpness-Aware Minimization(SAM):在优化过程中采用SAM,通过考虑损失函数的尖锐度来选择更平滑的局部最小值,从而提高模型的泛化能力。

与传统Informer的区别

  1. 网络深度:Informer模型通常具有较深的网络结构,以捕捉时间序列中的长期依赖关系。而SAMformer采用了浅层结构,以减少计算复杂度和过拟合的风险。

  2. 注意力机制:Informer可能采用更复杂的注意力机制(如自注意力机制)来捕捉时间序列中的时序依赖。而SAMformer则采用通道注意力机制,并简化了注意力模块的设计,以减少训练不稳定性和过拟合问题。

  3. 优化方法:Informer通常采用标准的优化方法(如Adam)进行训练。而SAMformer引入了Sharpness-Aware Minimization(SAM)作为优化方法,以提高模型的泛化能力。

  4. 应用目标:虽然两者都旨在提高时间序列预测的性能,但SAMformer更侧重于解决Transformer在时间序列预测中的训练不稳定和泛化能力差的问题,而Informer则可能更侧重于提高预测精度和捕捉长期依赖关系。

综上所述,SAMformer通过引入浅层结构、通道注意力机制、可逆实例归一化和Sharpness-Aware Minimization等策略,成功克服了传统Transformer在时间序列预测中的局限性,提高了模型的泛化能力和预测性能。

  • 14
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值