Logistics回归、Softmax代码实现--Tensorflow部分

Logistics回归、Softmax代码实现–Tensorflow部分–潘登同学的机器学习笔记

python版本–3.6 ; Tensorflow版本–1.15.0 ;编辑器–Pycharm

  • 任务:

对mnist手写数据集进行分类, mnist是入门级的数据集, 我们会经常使用他

导入必要的库和数据集

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow_core.examples.tutorials.mnist import input_data
from tensorflow.python.framework import ops
ops.reset_default_graph()
# 创建会话
sess = tf.Session()
mnist = input_data.read_data_sets(r'C:\Users\潘登\PycharmProjects\神经网络\MNIST_data_bak', one_hot=True)

声明学习率, 批量大小, 占位符和模型变量

learning_rate = 0.01
batch_size = 500
x_data = tf.placeholder(shape=[None, 784], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 10], dtype=tf.float32)  # 因为是one_hot编码所以占位符的宽度是10
W = tf.Variable(tf.zeros(shape=[784, 10]))  # W初始化为0
b = tf.Variable(tf.zeros(shape=[10]))  # b初始化为0

Sotfmax模型

model_output = tf.nn.softmax(tf.add(tf.matmul(x_data, W), b))

声明损失函数(交叉熵), 初始化变量, 声明优化器

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_target, logits=model_output)
init = tf.global_variables_initializer()
my_opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step = my_opt.minimize(cross_entropy)
sess.run(init)

保存并绘制计算图

writer = tf.summary.FileWriter(r"C:\Users\潘登\PycharmProjects\神经网络\Tensorflow深度学习与实战\graph_softmax",sess.graph) # 保存计算图

Softmax计算图

注: 如何查看计算图, 在线性回归代码实现–Tensorflow部分讲过

训练模型

# 迭代遍历, 并在随机选择的数据上进行模型训练, 迭代1000次 每100次迭代输出变量值和损失值, 将其用于之后的可视化
loss_vec = []
for i in range(1000):
    rand_x, rand_y = mnist.train.next_batch(batch_size)
    # 目标:最优化损失
    sess.run(train_step, feed_dict={x_data:rand_x,
                                    y_target:rand_y})
    # 更新loss值
    temp_loss = sess.run(cross_entropy, feed_dict={x_data:rand_x,
                                                   y_target:rand_y})
    loss_vec.append(temp_loss.mean())
    # 每100次打印
    if (i+1) % 100 == 0:
        print('Step:', i+1)
        print('Loss为:', temp_loss.mean())

查看训练结果

plt.figure(2)
plt.plot(loss_vec, 'k--')
plt.title('cross_entropy per Generation')
plt.xlabel('Generation')
plt.ylabel('cross_entropy')
plt.show()

Softmax的loss函数图

从训练集中挑一组进行检验

# 从训练集中挑一组进行检验
images = mnist.test.images
labels = mnist.test.labels

# 测试刚刚训练好的模型
y = tf.nn.softmax(model_output)

# 打印图片
plt.figure(figsize=(12, 8))
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
for test_num in range(1877, 1883):
    image = images[test_num]
    label = labels[test_num]
    a = np.array(image).reshape(1, 784)
    result = sess.run(y, feed_dict={x_data:a})
    plt.subplot(2, 3, test_num - 1876)
    plt.imshow(image.reshape(28,28))
    plt.title('这张照片的实际数字是:%d\n 预测结果为:%d'%(np.argwhere(label == 1), np.argmax(result)))
plt.show()

结果如下:

Softmax测试结果

完整代码

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow_core.examples.tutorials.mnist import input_data
from tensorflow.python.framework import ops
ops.reset_default_graph()
# 创建会话
sess = tf.Session()
mnist = input_data.read_data_sets(r'C:\Users\潘登\PycharmProjects\神经网络\MNIST_data_bak', one_hot=True)

# 声明学习率, 批量大小, 占位符和模型变量
learning_rate = 0.01
batch_size = 500
x_data = tf.placeholder(shape=[None, 784], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 10], dtype=tf.float32)  # 因为是one_hot编码所以占位符的宽度是10
W = tf.Variable(tf.zeros(shape=[784, 10]))  # W初始化为0
b = tf.Variable(tf.zeros(shape=[10]))  # b初始化为0

# 增加softmax模型
model_output = tf.nn.softmax(tf.add(tf.matmul(x_data, W), b))

# 声明损失函数(交叉熵), 其为批量损失的平均值, 初始化变量, 声明优化器
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_target, logits=model_output)
init = tf.global_variables_initializer()
my_opt = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step = my_opt.minimize(cross_entropy)
sess.run(init)

writer = tf.summary.FileWriter(r"C:\Users\潘登\PycharmProjects\神经网络\Tensorflow深度学习与实战\graph_softmax",sess.graph) # 保存计算图
# 迭代遍历, 并在随机选择的数据上进行模型训练, 迭代1000次 每100次迭代输出变量值和损失值, 将其用于之后的可视化
loss_vec = []
for i in range(1000):
    rand_x, rand_y = mnist.train.next_batch(batch_size)
    # 目标:最优化损失
    sess.run(train_step, feed_dict={x_data:rand_x,
                                    y_target:rand_y})
    # 更新loss值
    temp_loss = sess.run(cross_entropy, feed_dict={x_data:rand_x,
                                                   y_target:rand_y})
    loss_vec.append(temp_loss.mean())
    # 每100次打印
    if (i+1) % 100 == 0:
        print('Step:', i+1)
        print('Loss为:', temp_loss.mean())

# 绘图查看结果
plt.figure(2)
plt.plot(loss_vec, 'k--')
plt.title('cross_entropy per Generation')
plt.xlabel('Generation')
plt.ylabel('cross_entropy')
plt.show()

# 从训练集中挑一组进行检验
images = mnist.test.images
labels = mnist.test.labels

# 测试刚刚训练好的模型
y = tf.nn.softmax(model_output)

# 打印图片
plt.figure(figsize=(12, 8))
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
for test_num in range(1877, 1883):
    image = images[test_num]
    label = labels[test_num]
    a = np.array(image).reshape(1, 784)
    result = sess.run(y, feed_dict={x_data:a})
    plt.subplot(2, 3, test_num - 1876)
    plt.imshow(image.reshape(28,28))
    plt.title('这张照片的实际数字是:%d\n 预测结果为:%d'%(np.argwhere(label == 1), np.argmax(result)))
plt.show()

Logistics回归、Softmax代码实现–Tensorflow部分就是这样了, 继续下一章吧!pd的Machine Learning

### 回答1: 以下是一个简单的 self-attention 代码示例,使用 TensorFlow 实现: ```python import tensorflow as tf class SelfAttention(tf.keras.layers.Layer): def __init__(self, units): super(SelfAttention, self).__init__() self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def call(self, inputs): # inputs shape: (batch_size, seq_len, embedding_dim) # hidden shape: (batch_size, seq_len, units) hidden = tf.nn.tanh(self.W1(inputs) + self.W2(inputs)) # score shape: (batch_size, seq_len, 1) score = self.V(hidden) # attention_weights shape: (batch_size, seq_len, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape: (batch_size, units) context_vector = attention_weights * inputs context_vector = tf.reduce_sum(context_vector, axis=1) return context_vector ``` 这个 self-attention 层接受一个形状为 (batch_size, seq_len, embedding_dim) 的输入张量,其中 batch_size 是批量大小,seq_len 是序列长度,embedding_dim 是嵌入维度。它通过两个全连接层 W1 和 W2 将输入映射到一个隐藏表示,然后使用另一个全连接层 V 计算每个时间步的得分。得分通过 softmax 函数进行归一化,得到每个时间步的注意力权重。最后,将注意力权重乘以输入张量,得到上下文向量,作为 self-attention 层的输出。 使用这个 self-attention 层的示例代码: ```python import numpy as np # 创建一个 self-attention 层 attention_layer = SelfAttention(units=32) # 创建一个输入张量 inputs = tf.keras.Input(shape=(10, 16)) # 在输入张量上应用 self-attention 层 context_vector = attention_layer(inputs) # 创建一个模型 model = tf.keras.Model(inputs=inputs, outputs=context_vector) # 生成一些随机输入数据 x = np.random.randn(32, 10, 16) # 在模型上进行推理 output = model(x) print(output.shape) # 输出 (32, 32) ``` ### 回答2: 自注意力机制(self-attention)是目前在自然语言处理领域广泛应用的一种机制。自注意力机制在BERT、GPT-2等模型中占据了非常重要的位置,因此,掌握自注意力机制的实现方法对进行文本处理任务非常重要。 而在TensorFlow中,实现自注意力机制也非常简单。下面是一个简单的TensorFlow代码示例: ```python import tensorflow as tf class SelfAttention(tf.keras.layers.Layer): def __init__(self, dim, num_heads): super(SelfAttention, self).__init__() # 创建查询、键、值的权重矩阵 self.query_weights = tf.keras.layers.Dense(units=dim) self.key_weights = tf.keras.layers.Dense(units=dim) self.value_weights = tf.keras.layers.Dense(units=dim) # 查询的分组数:即头的数量 self.num_heads = num_heads # 定义multi-head softmax层 self.multihead_softmax = tf.keras.layers.Dense(units=dim) def call(self, inputs): # inputs的shape:(batch_size, seq_len, embedding_size) # 生成查询、键、值 queries = self.query_weights(inputs) keys = self.key_weights(inputs) values = self.value_weights(inputs) # 将最后一维embedding_size分成num_heads份 queries = tf.reshape(queries, shape=(tf.shape(queries)[0], -1, self.num_heads, queries.shape[-1] // self.num_heads)) keys = tf.reshape(keys, shape=(tf.shape(keys)[0], -1, self.num_heads, keys.shape[-1] // self.num_heads)) values = tf.reshape(values, shape=(tf.shape(values)[0], -1, self.num_heads, values.shape[-1] // self.num_heads)) # 经过matmul计算得到attention分布 attention_matmul = tf.matmul(queries, keys, transpose_b=True) attention_score = tf.nn.softmax(attention_matmul / tf.math.sqrt(tf.cast(keys.shape[-1], dtype=tf.float32))) attention_output = tf.matmul(attention_score, values) # 对前两维进行reshape,再经过全连接层得到结果 attention_output = tf.reshape(attention_output, shape=(tf.shape(attention_output)[0], -1, attention_output.shape[-2] * attention_output.shape[-1])) output = self.multihead_softmax(attention_output) return output ``` 以上函数中,我们首先定义了一个SelfAttention类,该类继承了TensorFlow中的keras.layers.Layer类。在该类中,我们定义了查询、键、值的权重矩阵,以及多头softmax层。然后在call函数中,我们将输入进行查询、键、值的计算,然后分成多个头,经过matmul计算得到attention分布,最后将前两维进行reshape后再经过全连接层得到输出。 使用该SelfAttention类时,只需要在定义model时添加该层即可。例如: ```python import tensorflow as tf input = tf.keras.layers.Input(shape=(None, 512)) self_attention = SelfAttention(dim=512, num_heads=8)(input) model = tf.keras.models.Model(input, self_attention) ``` 以上代码示例可以将输入通过定义的SelfAttention层进行处理,然后输出self-attention后的结果。 ### 回答3: Self-attention(自注意力)是一种用于自然语言处理和计算机视觉领域的自监督学习方法,它通过允许模型在输入序列中关注不同位置的信息来实现对序列数据的建模。代码tensorflow实现了自注意力模型,使得开发者可以使用tensorflow库快速部署自注意力应用。 在代码tensorflow中,首先需要定义一个自注意力层。在该层中,输入数据被表示为一个矩阵,我们可以使用矩阵点积和softmax函数来计算每个注意头的输出: ```python class SelfAttention(tf.keras.layers.Layer): def __init__(self, units): super(SelfAttention, self).__init__() self.units = units self.W_q = tf.keras.layers.Dense(units=self.units) self.W_k = tf.keras.layers.Dense(units=self.units) self.W_v = tf.keras.layers.Dense(units=self.units) self.dense = tf.keras.layers.Dense(units=self.units) def call(self, inputs): Q = self.W_q(inputs) #[batch_size, query_length, depth] K = self.W_k(inputs) #[batch_size, key_length, depth] V = self.W_v(inputs) #[batch_size, value_length, depth] #计算分数,通过矩阵相乘 score = tf.matmul(Q, K, transpose_b=True) #缩放得分 depth = tf.cast(tf.shape(K)[-1], tf.float32) scaled_score = score / tf.math.sqrt(depth) #使用softmax函数计算权重 weights = tf.nn.softmax(scaled_score, axis=-1) #计算加权和 attention_output = tf.matmul(weights, V) #拼接所有头的输出 heads = tf.concat(tf.split(attention_output, num_or_size_splits=self.num_heads, axis=-1), axis=0) return self.dense(heads) ``` 然后,我们可以使用定义好的自注意力层来构建一个自注意力模型。该模型使用多头注意力,允许模型同时关注多个位置的信息。 ```python class SelfAttentionModel(tf.keras.Model): def __init__(self, num_heads, units, output_units): super(SelfAttentionModel, self).__init__() self.num_heads = num_heads self.self_attention = SelfAttention(units=units) self.output_layer = tf.keras.layers.Dense(units=output_units, activation='softmax') def call(self, inputs): self_attention_output = self.self_attention(inputs) return self.output_layer(self_attention_output) ``` 最后,我们可以使用tensorflow的训练方法来训练自注意力模型,并在测试集上评估其性能。同时,我们也可以使用训练好的模型来执行不同的自然语言处理和计算机视觉任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值