1:数据分析师就像是医生
:病人先要取体检,采集一些数据,然后医生看着数据 去做诊断。期间重要要的就是和病人的交流 ,如何去问是一门学问
2:数据分析师常犯的错误
1:这么做,包治百病
2:你觉得你出了什么问题
3:不管,先来个全面检查,要很多数据
4:不管,A指标低了,那就把A变高。
3:分析步骤
1:把业务问题变成数据问题,定义问题的意思,确定标准判断是否是个问题,分析流程选择方法,确认重点,输出方案
2:点 线(可以重视一下标准,为什么说是个问题) 面 分析法
4:什么是业务
1:比如买牛奶买一送一,和刷信用卡送一杯咖啡。看似一样,其实内在逻辑完全不一样。一个为了促销,一个未来绑卡后信用卡带来的收入。只有理解业务背后的逻辑,才有意义。
2:业务能力分不同阶段:明白在干什么----能设计改进流程,创造新东西
3:一定要主动去了解业务,原因:首先业务不会主动来教你的,其次你问业务,业务只会和你说重点工作,以及他们遇到的困难,很少有一整套逻辑的。最后 业务能做的事情也比较有限,他们不能改产品,不能改规则,只能靠着自身的坚持和沟通技巧。所以要自信。
4:可以从这几个点去思考 业务的数据:哪些过程会产生数据(录入埋点),哪些过程会使用数据(盘点 问题分析),哪些过程会影响数据(就是哪些案例或者机会点 能提升/降低效果)。
因此总结:了解业务就是
:哪个部门 做了什么事情 产生了什么数据 他们看关注什么数据 做了什么会影响数据结果
5:能力一:理解业务七步法:
:了解业务模式;(百度去看行业大公司的玩法 遇到的问题机会 收益等)
:组织架构
:KPI 重点关注的工作是什么
:理解产品 可以更深入理解产品的特点数据,销售数据,使用行为的数据
:渠道 就是用户可以通过哪些方式 接触产品 也是一种过程行程情况。
:用户 用户的特征 用户信息怎么采集的 思考用户的时候,最好是分层。
:运营 对产品管理;对渠道(销售前中后过程 做运营);对用户服务。
:沟通的一些技巧:提前准备计划表,找好聊的人先聊;自己口述一遍才说明你懂;熟练度不是学出来的,是练出来的。
6:能力二:把需求问题记录下来
1:知道并时刻牢记,数据需求<>数据分析需求。数据分析需求 需要有分析的过程和结论策略。数据分析无非就是 解决 现状怎样?什么原因?未来怎样?对吧
2:做数据分析的时候,你首先要询问:现状,业务认同的标准,多指标时业务的主观重点。当你确认是个问题后,才开始分析原因。那分析原因就是提出合理的假设去验证。重点关注可以解决的原因 而不是甩锅不解决。对于预测的问题:第一必须要得到业务认可的逻辑再去预测,第二预测必须是细致分析后 对此了解后才能预测
3:初级需求沟通:明确了数据,问题的意义。
中级:建立一个需求的排班表(需求人 具体内容 预计时间 交付时间)。
高级需求沟通
:主动挖掘更多的需求。比如业务只要单个数据,你提供更多维度的数据,并给出理由。比如业务需要一个报告,你能干脆说这个很重要,建立指标持续跟踪。比如业绩好的时候,也能看一下关键指标好的程度。在业务认可的背景下,更容易争取建议。
:自己定期找哪些对数据感兴趣的业务,自己定期发布一些数据激发需求。以业务KPI为驱动,勾出业务对其他数据的兴趣。
7:能力三:定义问题 明白问题的意思
1:明白属于哪种问题,最本质的问题是什么,然后才是分析,最终才是输出 输出物一定要针对最开始的需求,不要忘了目的。
2:
:首先判断 个人观点 还是事实,这里就会首先用到数据去看。
:如果问题有形容词,判断标准对不对。
:如果问题是执行,问怎么做 方法是什么,你要确认 谁做,什么时候做,用什么方法做,做到什么标准,目标 目的是什么等。首先要确认这些内容,才能展开分析,输出方案。
:最后一定提前确认输出物的形式,不然白忙活。比如 格式,时间范围,标准,需求一起提完,
:明白 数据 和 对应的用途作用
3:比如一个题目:为什么数据人才那么难招?
:主语是部门领导 或者 招聘HR 分析的重点就完全不一样了
:谓语 招聘这个事情难
:宾语 数据人才 关系的名词的定义
:定状补 难 标准是什么?什么时候难的? 一直都难吗? 何出此言?
:因此 对名词 形容词 动词 都有不同的理解标准
8:能力四:明确问题之后 才到梳理分析的要看的指标
1:目标一定要明确,步骤拆解越细致越好,每个步骤需要的数据。
9:能力五:确定标准(这是后续分析结论的基础)
1:首先好的标准 需要:SMART 具体可衡量可触达相关有时限。 如何让标准具体,可以增加一些量化的内容 比如一个好相处的标准--很少生气
2:工作中标准难事因为可能多个指标来衡量 好坏。
3:一维标准:平均 二八原则 十分位。
:二维:矩阵象限法 会去划分4个象限,来评价。
:三维:难点在于要确定权重和一票否决的指标。
:多维:首先就是降维(就是把一些指标先合成一类) 简化难度,或者直接找重点指标。这里用到的方法一般是:并列 漏斗 杜邦分析。对于多个指标衡量一般用专家法,层次分析法。
4:看数据一定要结合时间。同比适合看长期发展的业务,环比适合看短期新增或者发力的业务。同比违反了规律,环比走势偏差 都说明处理问题。看数据问自己:他是持续发生的吗?同比如何?总体其他业务线如何?
5:行为指标怎么评价?一般来说可以把行为指标和结果绑定,证明行为指标的价值,比如多久响应率和录入的关系,最好是看看低于多少 会带来什么坏结果。
6:你能这么总结工作就好了:知道数据指标,知道对应大致的标准是什么,知道异常后对应策略如何。
10:能力六:发现问题 分析原因
1:这里提供了一个思考:点 线 方法 确认是个问题后,先思考 谁负责(就是分渠道分团队分环节分用户群的拆解),然后再外因内因的拆解。
2:用户数据下降(活跃流失):先分环节 群体 来源 再分析。 流失怎么定义,是不是本身产品自带周期()
3:新用户越来越少:首先看不同渠道,这里需要结合ROI 新增的问题一定要结合质量产出,然后才发现好的渠道的特点,看是否可以复制
4:活动做完不见效:这个问题很难,不知道是否是自然增长 ,也不知道多因素中哪个最关键。常规方法:活动前后比较,活动非活动对比,同活动同期对比,不同活动对比。 活动可以分为策划阶段和执行阶段。评估策划阶段重点看 人的参与率,达标率,领奖率。
5:如何应对被怼:
:为什么不考虑其他:一开始就要考虑多个维度,我们只是从中找了重要的几个
:为什么不深挖:这是给谁看的,不需要太过于细致
:不分析也知道这个原因:分析可以让我们能更具体知道差距多少,提升多少,对应的策略。
10:能力七:提出方案 的能力()
1:靠谱的方案至少要明确:谁做(不多说) 现状(决定程度) 方法 目标(做到什么程度)。其次包含四个因素 还要有 可行性 和 优先性。所以一定要想办法 找业务的负责人,去了解现状,难点 希望达到的目标是什么,再给出方案。
2:如何提方案:看看过往的做法;从标杆提炼方法论找差距;从对手关注点找思路。然后要思考可行性。结合ROI,最终核心目标的达成 ,来选最优方案。
3:业务假设预测问题:比如 业绩=客户量*转化率*客单价。要找准关键因素,要判断关键因素是否会变化,变化的因果指标是哪些。这样更能帮助你预测。
4:提方案的
:自己体验了业务的所有动作,收集了业务动作。
:体验的过程问,问自己 有没有数据产生,我愿意进行下一步吗为什么,我属于什么类型的用户,其他人会怎么样。
5:数据分析和业务的边界是什么:数据分析师告诉事实和逻辑,业务时创造奇迹
10:总结汇报 的能力()
1:有数据 有对比 才能下结论。建议要可行性,谁做
2:做汇报的目的是什么? 说服 某人 干某事
3:主动想做报告不知如何引发业务的关注:可以直接说KPI相关的结果不好,也可以结果社会重点事件,也可以说竞争对手好的结果
4:如果报告是未来推动项目,一定要中带你突出内容。要包括:分析背景当前现状+标准 得出问题;原因是什么 重点原因排序;应该怎么做
5:这个是简单的汇报形式(说给业务部门听的)
:不是光我做了什么什么——而是(FAB格式)我做了什么后 ,业务可以看到了什么,从而帮助提升解决什么。比如我做了A报表,业务可以看到XX情况,这样在盘点时,就能发现XX问题
6:汇报的结构(这个是专业的汇报给数据领导的)
:背景-目标-呈现分析思路-结论-建议-附件 指标解释-具体分析过程-
7:数据分析 老板认可才是王道,所有汇报很重要,不然都是白忙活