域外游踪(二)

域外游踪(二)
杨桂林
过灵州
灵川宁夏境,唐朔方节度使所在地。玄宗宠安禄山,安反唐,玄宗被迫流亡,太子李享灵州即位。
荒政宠信拍马流,
献媚当上万户候。
以史为鉴知兴亡,
安史之乱不可取。
榆林随想:
镇北壮兮锁边关,
胡汉互市人声喧。
昔日茫茫沙碛地,
忽报一夜春风还。
走访打工村
春寒风起遍地凉,
老树破屋土打墙。
青壮全都打工去,
留下老人晒太阳。
夜思
喜闻书香五更醒
反侧长思万里程
一抹朝阳催新绿
山道弯弯留旧痕
2018年2月11日余西行陝、甘、宁采访。随黄河,越鸟兰布和大漠。一路与黄河结伴,沐落日余辉,思古之幽情,悠然而生,故尔口占一首:
西出贺兰赴甘陇,
青砖红瓦柳色青。
大漠孤烟随风去,
阳关处处有亲人。
与定西领导一席谈
长歌一曲望祁连,
陇中儿女不等闲。
捉鳖揽月多壮志,
精准扶贫换新天。
扶贫
长相思.风一程,雨一程,四十年坚守不放松:扶贪路路通。斗干旱,战贫困,黄土高原铺绿荫:荷池起蛙声。新气象,映彩虹,第一书记进了村:踏上新征程。
过银川
地处塞外遍地寒,
自古屯垦苦守边。
马蹄疾驰烽烟起,
李夏王朝二百年。
改革开放四十年,
崛起广厦千万间,
回汉融融铸国魂
田畴泛绿柳含烟。
参观路遥文学纪念馆
路遥少贫少年由清涧过继到延川大伯继子。继母要饭让他读完中学。在贫困中,他完成了人生,平凡的世界,妻子携女儿弃他而去,在孤独与贫困中,用生命诠释了人生的意义。
燃尽生命铸新篇,
人生平凡不平凡。
先生英年含笑去,
身后华章震文坛。
李自成王宫随想:
当年卷起农奴风,
地动山摇撼朱明。
暖风吹得新贵醉,
紫禁城里做春梦。
大梦先觉万事空,
天怒人怨在甲申。
盘龙山上望落日,
野草凄凄掩王宫。
与诸君话别包头
与诸君一路同行,经银川、兰州.定西、固原.榆林、二十余县。所闻、相見,感慨颇多:
暂短话别包头城,
各奔东西南北中。
期盼还有相聚日,
驰骋文坛候佳音

为了创建这样一个推荐系统,我们可以利用一些基本的算法和技术,包括数据挖掘、机器学习和地理位置服务。这里提供一个简单的Python伪代码示例,使用了协同过滤(Collaborative Filtering)、基于时间和天气条件的规则引擎以及地理编码API: ```python import requests from datetime import datetime from sklearn.metrics.pairwise import cosine_similarity # 假设我们有一个用户历史游踪和偏好数据库(例如字典) user_preferences = { "Alice": {"location": "上海", "history": ["科技馆", "外滩"], "weather_preferences": [20, 30]}, "Bob": {"location": "北京", "history": ["故宫", "798艺术区"], "weather_preferences": [25, 35]}, # ... } # 假设有天气API返回的城市实时天气(示例,实际通过API获取) def get_weather(location): response = requests.get(f"https://api.weather.com/weather/{location}") return response.json()["weather"] # 获取当前时间和用户的天气偏好范围 current_time = datetime.now().time() user_weather = user_preferences["user"].get("weather_preferences") # 根据时间和天气筛选目的地 def filter_destinations(locations, time, weather): filtered_locs = [] for loc in locations: if is_time_appropriate(time) and is_weather_appropriate(weather, get_weather(loc)): filtered_locs.append(loc) return filtered_locs # 使用余弦相似度计算用户偏好和历史目的地的相关性 def recommend(user, locations): similarity_scores = cosine_similarity([user["history"]], [locations]) most_similar_loc = locations[similarity_scores[0].argmax()] return most_similar_loc # 示例函数应用 def suggest_playground(user, current_location): nearby_locations = find_nearby_locations(current_location) filtered_locs = filter_destinations(nearby_locations, current_time, user_weather) return recommend(user, filtered_locs) # 假设有个查找附近地点的函数 def find_nearby_locations(current_location): # 使用地理编码API查询附近的地点 pass # 使用示例 user = "Alice" current_location = "上海" suggested_dest = suggest_playground(user, current_location) print(f"建议{user}在{current_location}附近的{suggested_dest}游玩。")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值