二元Weierstrass逼近定理及其证明

二元 W e i e r s t r a s s Weierstrass Weierstrass逼近定理:设 f ( x , y ) f(x,y) f(x,y)在区域 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0\le x\le 1,0\le y\le 1 0x1,0y1上连续,称
B m , n ( f , ; x , y ) = ∑ ν = 0 m ∑ μ = 0 n C m ν C n μ x ν ( 1 − x ) m − ν y μ ( 1 − y ) n − μ f ( ν m , μ n ) B_{m,n}(f,;x,y)=\sum_{\nu=0}^m\sum_{\mu=0}^nC_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}f \left(\dfrac{\nu}{m},\dfrac{\mu}{n} \right) Bm,n(f,;x,y)=ν=0mμ=0nCmνCnμxν(1x)mνyμ(1y)nμf(mν,nμ)
( m , n ) (m,n) (m,n) B e r n s t e i n Bernstein Bernstein多项式,则当 m , n → ∞ m,n\to \infty m,n时, B m , n ( f ; x , y ) → f ( x , y ) , ( x , y ) ∈ [ 0 , 1 ] × [ 0 , 1 ] B_{m,n}(f;x,y)\to f(x,y), (x,y)\in [0,1]\times [0,1] Bm,n(f;x,y)f(x,y),(x,y)[0,1]×[0,1]

证明:记 b m , ν , n , μ ( x , y ) = C m ν C n μ x ν ( 1 − x ) m − ν y μ ( 1 − y ) n − μ = b m , ν ( x ) b n , μ ( y ) b_{m,\nu,n,\mu}(x,y)=C_m^\nu C_n^\mu x^\nu (1-x)^{m-\nu}y^{\mu}(1-y)^{n-\mu}=b_{m,\nu}(x)b_{n,\mu}(y) bm,ν,n,μ(x,y)=CmνCnμxν(1x)mνyμ(1y)nμ=bm,ν(x)bn,μ(y)

因为 f ( x , y ) f(x,y) f(x,y)是闭区间上的连续函数

所以 f ( x , y ) f(x,y) f(x,y)一致连续,即 ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0,\exist \delta>0 ε>0,δ>0,对 ∀ ( x 1 , y 1 ) , ( x 2 , y 2 ) ∈ [ 0 , 1 ] × [ 0 , 1 ] \forall (x_1,y_1),(x_2,y_2)\in [0,1]\times [0,1] (x1,y1),(x2,y2)[0,1]×[0,1],满足 ∣ x 1 − x 2 ∣ < δ , ∣ y 1 − y 2 ∣ < δ |x_1-x_2|<\delta, |y_1-y_2|<\delta x1x2<δ,y1y2<δ,有 ∣ f ( x 1 , y 1 ) − f ( x 2 , y 2 ) ∣ < ε 4 |f(x_1,y_1)-f(x_2,y_2)|<\dfrac{\varepsilon}{4} f(x1,y1)f(x2,y2)<4ε

注意到 ∑ ν = 0 m ∑ μ = 0 n b m , ν , n , μ ( x , y ) = 1 \sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^nb_{m,\nu,n,\mu}(x,y)=1 ν=0mμ=0nbm,ν,n,μ(x,y)=1,对任意 ( x , y ) ∈ [ 0 , 1 ] × [ 0 , 1 ] (x,y)\in [0,1]\times [0,1] (x,y)[0,1]×[0,1],有
∣ f ( x , y ) − B m , n ( f ; x , y ) ∣ = ∣ ∑ ν = 0 m ∑ μ = 0 n f ( x , y ) b m , ν , n , μ ( x , y ) − ∑ ν = 0 m ∑ μ = 0 n f ( ν m , μ n ) b m , ν , n , μ ( x , y ) ∣ ≤ ∑ ν = 0 m ∑ μ = 0 n ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) \begin{align} |f(x,y)-B_{m,n}(f;x,y)|&=\left|\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f(x,y)b_{m,\nu,n,\mu}(x,y)-\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)b_{m,\nu,n,\mu}(x,y)\right|\\ &\le\sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n \left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) \end{align} f(x,y)Bm,n(f;x,y)= ν=0mμ=0nf(x,y)bm,ν,n,μ(x,y)ν=0mμ=0nf(mν,nμ)bm,ν,n,μ(x,y) ν=0mμ=0n f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)
将上述方程右边的求和项分为四部分
∑ ν = 0 m ∑ μ = 0 n ≤ ∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ < δ + ∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ < δ + ∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ ≥ δ + ∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ ≥ δ \sum\limits_{\nu=0}^m\sum\limits_{\mu=0}^n\le \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}+ \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|<\delta}+ \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge\delta}+ \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge\delta} ν=0mμ=0nxν/m<δyμ/n<δ+xν/mδyμ/n<δ+xν/m<δyμ/nδ+xν/mδyμ/nδ
对于第一部分,有
∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ < δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) < ε 4 ∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ < δ b m , ν , n , μ ( x , y ) < ε 4 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)<\dfrac{\varepsilon}{4}\sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|<\delta}b_{m,\nu,n,\mu}(x,y)< \dfrac{\varepsilon}{4} xν/m<δyμ/n<δ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)<4εxν/m<δyμ/n<δbm,ν,n,μ(x,y)<4ε
对于第二部分,注意到 ( y − μ / n ) 2 / δ 2 ≥ 1 , ∑ ν = 0 m b m , ν ( x ) = 1 (y-\mu/n)^2/\delta^2\ge 1, \sum\limits_{\nu=0}^mb_{m,\nu}(x)=1 (yμ/n)2/δ21,ν=0mbm,ν(x)=1,于是有
∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) ≤ ∑ ν = 0 m ∑ ∣ y − μ / n ∣ ≥ δ 2 M b m , ν ( x ) b n , μ ( y ) ≤ ∑ ∣ y − μ / n ∣ ≥ δ 2 M ( y − μ / n ) 2 δ 2 b n , μ ( y ) ≤ 2 M n 2 δ 2 ∑ μ = 0 n ( μ − n y ) 2 b n , μ ( y ) \begin{align} \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) &\le \sum\limits_{\nu = 0}^m\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\ &\le \sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\ &\le \dfrac{2M}{n^2\delta^2}\sum\limits_{\mu =0}^n{(\mu-ny)^2}b_{n,\mu}(y) \end{align} xν/m<δyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)ν=0myμ/nδ2Mbm,ν(x)bn,μ(y)yμ/nδ2Mδ2(yμ/n)2bn,μ(y)n2δ22Mμ=0n(μny)2bn,μ(y)
其中 M = max ⁡ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 ∣ f ( x , y ) ∣ M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)| M=0x1,0y1maxf(x,y)

又注意到 ∑ μ = 0 n ( μ − m y ) 2 b n , μ ( y ) = n y ( 1 − y ) , y ( 1 − y ) ≤ 1 / 4 \sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4 μ=0n(μmy)2bn,μ(y)=ny(1y),y(1y)1/4

于是有
∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) ≤ 2 M n δ 2 y ( 1 − y ) ≤ M 2 n δ 2 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{n\delta^2}y(1-y)\le \dfrac{M}{2n\delta^2} xν/m<δyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)nδ22My(1y)2nδ2M
N 1 = 2 M ε δ 2 N_1=\dfrac{2M}{\varepsilon\delta^2} N1=εδ22M,则当 n > N 1 n> N_1 n>N1时,有
∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) < ε 4 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/m<δyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)<4ε
对于第三部分同理,有
∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ < δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) < ε 4 \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|< \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/mδyμ/n<δ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)<4ε
对于第四部分,注意到 ( x − ν / m ) 2 / δ 2 ≥ 1 , ( y − μ / n ) 2 / δ 2 ≥ 1 (x-\nu/m)^2/\delta^2\ge 1,(y-\mu/n)^2/\delta^2\ge 1 (xν/m)2/δ21,(yμ/n)2/δ21,于是有
∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) ≤ ∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ ≥ δ 2 M b m , ν ( x ) b n , μ ( y ) ≤ ∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ ≥ δ 2 M ( x − ν / m ) 2 δ 2 b m , ν ( x ) ( y − μ / n ) 2 δ 2 b n , μ ( y ) ≤ 2 M m 2 n 2 δ 4 ∑ ν = 0 m ∑ μ = 0 n ( ν − m x ) 2 b m , ν ( x ) ( μ − n y ) 2 b n , μ ( y ) \begin{align} \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) &\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M b_{m,\nu}(x)b_{n,\mu}(y)\\ &\le \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}2M \dfrac{(x-\nu/m)^2}{\delta^2}b_{m,\nu}(x)\dfrac{(y-\mu/n)^2}{\delta^2}b_{n,\mu}(y)\\ &\le \dfrac{2M}{m^2n^2\delta^4}\sum\limits_{\nu =0}^m\sum\limits_{\mu =0}^n{(\nu-mx)^2b_{m,\nu}(x)(\mu-ny)^2}b_{n,\mu}(y) \end{align} xν/mδyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)xν/mδyμ/nδ2Mbm,ν(x)bn,μ(y)xν/mδyμ/nδ2Mδ2(xν/m)2bm,ν(x)δ2(yμ/n)2bn,μ(y)m2n2δ42Mν=0mμ=0n(νmx)2bm,ν(x)(μny)2bn,μ(y)
其中 M = max ⁡ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 ∣ f ( x , y ) ∣ M=\max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)| M=0x1,0y1maxf(x,y)

又注意到 ∑ ν = 0 m ( ν − m x ) 2 b m , ν ( x ) = m x ( 1 − x ) , x ( 1 − x ) ≤ 1 / 4 , ∑ μ = 0 n ( μ − m y ) 2 b n , μ ( y ) = n y ( 1 − y ) , y ( 1 − y ) ≤ 1 / 4 \sum\limits_{\nu =0}^m{(\nu-mx)^2}b_{m,\nu}(x)=mx(1-x),x(1-x)\le 1/4,\sum\limits_{\mu =0}^n{(\mu-my)^2}b_{n,\mu}(y)=ny(1-y),y(1-y)\le 1/4 ν=0m(νmx)2bm,ν(x)=mx(1x),x(1x)1/4,μ=0n(μmy)2bn,μ(y)=ny(1y),y(1y)1/4

于是有
∑ ∣ x − ν / m ∣ < δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) ≤ 2 M m n δ 4 x ( 1 − x ) y ( 1 − y ) ≤ M 8 m n δ 2 \sum\limits_{|x-\nu/m|<\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y)\le \dfrac{2M}{mn\delta^4}x(1-x)y(1-y)\le \dfrac{M}{8mn\delta^2} xν/m<δyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)mnδ42Mx(1x)y(1y)8mnδ2M
则当 m n > M 2 ε δ 2 mn>\dfrac{M}{2\varepsilon \delta^2} mn>2εδ2M时,有
∑ ∣ x − ν / m ∣ ≥ δ ∑ ∣ y − μ / n ∣ ≥ δ ∣ f ( x , y ) − f ( ν m , μ n ) ∣ b m , ν , n , μ ( x , y ) < ε 4 \sum\limits_{|x-\nu/m|\ge\delta}\sum\limits_{|y-\mu/n|\ge \delta}\left| f(x,y)-f\left(\dfrac{\nu}{m},\dfrac{\mu}{n}\right)\right|b_{m,\nu,n,\mu}(x,y) <\dfrac{\varepsilon}{4} xν/mδyμ/nδ f(x,y)f(mν,nμ) bm,ν,n,μ(x,y)<4ε
综上,有 max ⁡ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 ∣ f ( x , y ) − B m , n ( f ; x , y ) ∣ < ε \max\limits_{0\le x\le 1, 0\le y\le1}|f(x,y)-B_{m,n}(f;x,y)|<\varepsilon 0x1,0y1maxf(x,y)Bm,n(f;x,y)<ε

B m , n ( f ; x , y ) → f ( x , y ) , ( x , y ) ∈ [ 0 , 1 ] × [ 0 , 1 ] B_{m,n}(f;x,y)\to f(x,y),(x,y)\in[0,1]\times [0,1] Bm,n(f;x,y)f(x,y),(x,y)[0,1]×[0,1]

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ava实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),可运行高分资源 Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现的毕业设计&&课程设计(包含运行文档+数据库+前后端代码),Java实现
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言中,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言中常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言中常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言中用于封装代码的单元,可以实现代码的复用和模块化。C语言中定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言中用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言中定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言中用于存储同类型数据的结构,可以通过索引访问和修改数组中的元素。字符串是C语言中用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言中用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言中通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值