AI作业5-深度学习基础

本文探讨了人工智能、机器学习和深度学习的关系,强调深度学习在神经网络中的重要性。深度学习与传统浅层学习的主要区别在于特征提取方式和模型深度。介绍了神经元、人工神经元的概念,以及MP模型、单层感知机、异或问题、多层感知机、前馈神经网络的基本原理。同时,解释了激活函数在神经网络中的作用和常见的激活函数类型,以及在回归和分类任务中选择均方误差和交叉熵损失函数的原因。
摘要由CSDN通过智能技术生成

1.人工智能、机器学习、深度学习之间的关系

人工智能(Artificial Intelligence, AI)是指使计算机系统表现出智能的能力。机器学习(Machine Learning, ML)是人工智能的一个分支,是指让计算机系统自动地从数据中学习模型,并利用模型来进行预测或决策。深度学习(Deep Learning, DL)则是机器学习的一种特殊形式,它使用深度神经网络来学习数据的特征表示。

2.神经网络与深度学习的关系

神经网络是深度学习的核心,而深度学习则是利用多层神经网络来进行学习。深度学习中的神经网络通常具有多个隐藏层,这些隐藏层的神经元数量通常比输入层和输出层的神经元数量更多,从而可以学习到更复杂的特征表示。

3.“深度学习”和“传统浅层学习”的区别和联系

深度学习和传统浅层学习是机器学习的两个重要分支。它们之间的主要区别在于特征提取的方式和模型的深度。
传统浅层学习主要使用手动设计的特征,例如颜色、形状、纹理等来训练模型。这些手动设计的特征需要由领域专家进行定义,而这通常是一项费时费力的任务。此外,传统浅层学习通常采用线性模型,例如逻辑回归、支持向量机等,这些模型的学习能力受到特征质量的限制。
相比之下,深度学习使用的特征是通过训练模型自动学习得到的,这些特征通常具有更高的表征能力,能够更好地描述数据。深度学习模型通常由多个神经网络层组成,这些层逐渐对数据进行抽象和表示,形成一个复杂的非线性模型。这种深度结构允许深度学习模型捕捉到数据的更多复杂性和抽象概念,因此在许多任务上表现更好。

4.神经元、人工神经元

神经元是神经网络中的基本单元,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值