主流大模型加速推理框架对比表(vllm、tensorRT、llama.cpp、Ollama)

主流大模型加速推理框架的对比

在这里插入图片描述

补充说明:

性能与硬件权衡
    vLLM 和 TensorRT-LLM 依赖GPU,适合高吞吐、低延迟的企业级场景;llama.cpp 和 Ollama 侧重CPU/轻量GPU支持,适合资源受限环境。
    Ollama 在易用性上优于 llama.cpp ,但性能弱于后者;TensorRT-LLM 的硬件绑定特性使其在NVIDIA生态中无可替代。
量化与模型兼容性
    TensorRT-LLM 和 llama.cpp 支持低至INT4的量化,显著降低显存占用;
    vLLM 对多数开源模型兼容性较好,而 Ollama 依赖社区模型库,需手动扩展。
部署复杂度
    Ollama 和 llama.cpp 适合快速部署,而 vLLM 和 TensorRT-LLM 需专业调优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值