开源:SmolDocling-256M-preview 小模型完成更优的图像文档转换

SmolDocling 模型介绍

SmolDocling 是一种超紧凑的多模态图像-文本到文本模型(模型文件大小仅513M),专为高效的文档转换而设计。它通过生成一种名为 DocTags 的新通用标记格式,捕捉页面中所有元素的完整上下文和位置信息。与依赖大型基础模型或多模型组合的传统方法不同,SmolDocling 通过一个 256M 参数的视觉-语言模型实现了端到端的文档转换,能够准确捕捉文档内容、结构和空间位置。

主要特点

DocTags 格式:一种优化的文档标记格式,用于高效表示文档的完整内容和布局特性。
多模态处理:支持 OCR、布局保留、代码识别、公式识别、图表提取、表格识别等功能。
高效推理:在 A100 GPU 上每页平均推理时间为 0.35 秒,占用 VRAM 仅为 0.489 GB。
数据集扩展:贡献了多个新数据集,包括图表、表格、公式和代码识别任务的公开数据集。
性能优越:在多个任务上与更大规模的模型(如 Qwen2.5-VL)相比,表现出更高的性能,同时显著降低了计算需求。

技术要点归纳

在这里插入图片描述

应用

SmolDocling 模型作为一种高效的多模态文档转换工具,具有广泛的应用场景。以下是一些具体的应用领域和场景:

1. 学术研究

论文处理:自动转换学术论文为结构化的数字格式,提取图表、公式、表格和文本内容,便于研究人员进行数据挖掘和文献分析。
文献数字化:将扫描的文献转换为可编辑和可搜索的数字格式,支持大规模文献存档和检索。

2. 企业办公

合同管理:自动解析合同文档,提取关键条款和条件,支持合同审核和管理。
报告生成:将多页报告转换为结构化的数字格式,提取图表和数据,便于进一步分析和展示。
表格处理:自动识别和提取表格数据,支持数据导入和分析。

3. 出版行业

书籍数字化:将纸质书籍转换为电子书格式,支持多平台发布。
内容校对:自动识别和校对文本内容,提高出版质量。

4. 医疗行业

病历处理:自动解析病历文档,提取关键信息,支持医疗数据分析和患者管理。
研究报告分析:提取和结构化医疗研究报告中的图表和数据,便于进一步研究和应用。

5. 教育领域

教材数字化:将教材转换为数字格式,支持在线学习和教学资源管理。
作业批改:自动识别和批改学生作业中的图表和公式,提高教学效率。

6. 内容创作

图表和数据提取:从文档中提取图表和数据,支持内容创作者快速生成可视化内容。
代码和公式处理:自动识别和格式化代码和公式,便于技术文档的编写和分享。

7. 数字存档

历史文档数字化:将历史文档转换为数字格式,支持长期存档和检索。
多格式支持:支持多种输出格式(如 Markdown、HTML、JSON),便于不同平台的兼容和使用。

8. 其他应用场景

专利分析:自动解析专利文档,提取技术细节和图表,支持专利管理和分析。
表格和数据处理:自动识别和提取表格数据,支持数据分析和可视化。
化学和材料科学:提取分子结构和化学公式,支持化学和材料科学领域的研究。

总结

SmolDocling 通过其紧凑的模型架构和优化的 DocTags 格式,在多模态文档转换任务中展现了卓越的性能和效率。它不仅在多个任务上超越了更大规模的模型,还通过贡献丰富的公开数据集推动了文档理解领域的研究和应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值