离散选择模型中的分散系数theta到底该放在哪里呢?

前言

   \quad~~    一直都在想为啥子离散选择模型中分散系数以分母形式出现而在路径选择公式中以系数形式出现呢?看着公式想了想,现在想出了一个似乎感觉应该差不多很合理的答案,希望与大家一起探讨。

进入正题

根据随机效用理论,决策者在面对 n n n 个备选方案做选择时,会根据自身的意愿感知哪一个备选方案对自身而言是最好的,从而作出自身选择。这里的最好用数量来进行衡量就可以说是效用最高的

比如从A点到B点共有 n n n 条路,我现在需要从A点到B点,从节约时间的角度来考虑的话,那么我肯定希望选择最快捷的一条路。即如果我能以最快的时间到达我的目的地的话,对我而言,我就得到了最高的出行效用。

通常呢,我们的感知能力是有限的,如果我们记选择任意一个方案 j j j 的效用为 U j U_j Uj,那么 U j U_j Uj 为一个随机变量,它可以分为两部分,一部分呢是我们可以以实际那数字量化出来的,我们称为系统效用。另一部分呢为我们无法测量出来的,或估测时的误差,为一个随机变量,我们称为感知误差项。因此这里的方案 j j j 的效用 U j U_j Uj 就可以写为系统效用 V j V_j Vj 与随机误差项 ε j \varepsilon_j εj 的和,即:
U j = V j + ε j . (1) U_j=V_j+\varepsilon_j.\tag{1} Uj=Vj+εj.(1)
在多项式Logit模型中,我们假设随机误差项 ε j \varepsilon_j εj 服从零均值的Gumbel分布,其概率密度函数与累积分布函数分别为:
f ( x ) = 1 θ e x p ( − x θ − Φ ) e x p [ − e x p ( x θ − Φ ) ] , (2) f(x)=\frac{1}{\theta}exp(-\frac{x}{\theta}-\Phi)exp[-exp(\frac{x}{\theta}-\Phi)],\tag{2} f(x)=θ1exp(θxΦ)exp[exp(θxΦ)],(2) F ( x ) = P r ( ε j ≤ x ) = e x p [ − e x p ( x θ − Φ ) ] , (3) F(x)=Pr(\varepsilon_j\leq x)=exp[-exp(\frac{x}{\theta}-\Phi)],\tag{3} F(x)=Pr(εjx)=exp[exp(θxΦ)],(3)这里的参数 Φ \Phi Φ 为欧拉常数, Φ ≈ 0.577 \Phi\approx0.577 Φ0.577
从而可以得出决策者选择备选方案 j j j 的概率为: p j = P r ( U j > U k , ∀ k ≠ j ) = e x p ( V j / θ ) ∑ k e x p ( V k / θ ) . (4) p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j/\theta)}{\sum_k exp(V_k/\theta)}.\tag{4} pj=Pr(Uj>Uk,k=j)=kexp(Vk/θ)exp(Vj/θ).(4)

而通常在路径选择情形中我们以出行阻抗作为我们的出行负效用(因为我们出行就会花费时间,金钱等,这都属于是对我们自身资源的一种消耗),负效用越小的路径被选择的可能性就会越大。这里呢,同样因为人们的感知,计算等能力有限,我们所判定的出行负效用也为一个随机变量,为可直接估量的系统效用与随机误差项的和。同样以路径 j j j 为例,其感知出行负效用为 C j C_j Cj, 可进行估测的系统效用为 c j c_j cj,随机误差项为 ξ j \xi_j ξj, 则 C j C_j Cj 就可写为:
C j = c j + ξ j , (5) C_j=c_j+\xi_j,\tag{5} Cj=cj+ξj,(5)那么选择路径 j j j 的效用就可以写为: U j = − C j , (6) U_j=-C_j,\tag{6} Uj=Cj,(6)那么我们使用概率密度函数公式 (2) 计算得出的选择路径 j j j 的概率为:
p j = P r ( U j > U k , ∀ k ≠ j ) = e x p ( − c j / θ ) ∑ k e x p ( − c k / θ ) . (7) p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-c_j/\theta)}{\sum_k exp(-c_k/\theta)}.\tag{7} pj=Pr(Uj>Uk,k=j)=kexp(ck/θ)exp(cj/θ).(7)但通常呢,路径选择概率会写为如下形式:
p j = P r ( U j > U k , ∀ k ≠ j ) = e x p ( − θ c j ) ∑ k e x p ( − θ c k ) . (8) p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(-\theta c_j)}{\sum_k exp(-\theta c_k)}.\tag{8} pj=Pr(Uj>Uk,k=j)=kexp(θck)exp(θcj).(8)所以公式 (7) 和 (8) 同样是路径选择概率公式为什么不一样呢?

解决问题

观察概率密度函数,即公式 (2), 如果令 y = − x θ y=-\frac{x}{\theta} y=θx, 那么就有 f ( − θ y ) = 1 θ e x p ( y − Φ ) e x p [ − e x p ( y − Φ ) ] , (9) f(-\theta y)=\frac{1}{\theta}exp(y-\Phi)exp[-exp(y-\Phi)],\tag{9} f(θy)=θ1exp(yΦ)exp[exp(yΦ)],(9)那么 θ f ( − θ y ) = e x p ( y − Φ ) e x p [ − e x p ( y − Φ ) ] , (10) \theta f(-\theta y)=exp(y-\Phi)exp[-exp(y-\Phi)],\tag{10} θf(θy)=exp(yΦ)exp[exp(yΦ)],(10)对应的累积分布函数为 θ F ( − θ y ) = e x p [ − e x p ( y − Φ ) ] , (11) \theta F(-\theta y)=exp[-exp(y-\Phi)],\tag{11} θF(θy)=exp[exp(yΦ)],(11)看着公式 (10) 和公式 (11) 是不是相对于(2),(3) 来说更简洁呢?公式 (10) 和公式 (11) 变成了零均值的标准Gumbel分布。所以如果公式(2)为随机变量 ε j \varepsilon_j εj 的概率密度函数,从简化的角度来看,我们是不是可以让随机变量 ξ j = − ε j / θ \xi_j =- \varepsilon_j/\theta ξj=εj/θ,即 ε j = − θ ξ j \varepsilon_j= -\theta \xi_j εj=θξj,那么为了统一公式 (6),我们可以令 V j = − θ c j V_j = -\theta c_j Vj=θcj,那么 ε j \varepsilon_j εj 经过处理后的概率密度函数就可以表示为公式 (10) 和公式 (11),即选择路径 j j j 的概率就表示为 p j = ∫ − ∞ + ∞ e x p [ − e x p ( ε j + V j − V k − Φ ) ] ∗ e x p ( ε j − Φ ) e x p [ − e x p ( ε j − Φ ) ] d ε j , (12) p_j=\int_{-\infty}^{+\infty}exp[-exp(\varepsilon_j+V_j-V_k-\Phi)]* \\ exp(\varepsilon_j-\Phi)exp[-exp(\varepsilon_j-\Phi)]d\varepsilon_j, \tag{12} pj=+exp[exp(εj+VjVkΦ)]exp(εjΦ)exp[exp(εjΦ)]dεj,(12)
整理可得概率公式为: p j = P r ( U j > U k , ∀ k ≠ j ) = e x p ( V j ) ∑ k e x p ( V k ) , (13) p_j=Pr(U_j>U_k,\forall k\neq j)=\frac{exp(V_j)}{\sum_k exp(V_k)},\tag{13} pj=Pr(Uj>Uk,k=j)=kexp(Vk)exp(Vj),(13) V j = − θ c j V_j = -\theta c_j Vj=θcj代入公式 (13),即得到公式 (8)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值