本文摘抄自博士论文《支持向量机在智能建模和模型预测控制中的应用》,作者包哲静。
模型预测控制定义与概述
模型预测控制(Model Predictive control,MPC)是指用动态模型对未知系统的未来行为进行预测,并进而根据该模型对系统进行优化控制的一类控制策略。MPC是一类计算机控制算法,其利用过程模型预测对象的未来响应,在每个采样周期根据该模型优化对象的未来性能指标,进而得到一个最优的控制增量序列,并将该序列的第一个控制增量作用于被控对象。
MPC技术的发展和应用不是某一种统一理论的产物,而是在工业实践过程种独立发展起来的[1]。
MPC的主要思想是:在当前时刻,利用已知的输入输出信息和未来的输入信息,根据已建好的系统模型预测未来的输出状态,在反馈校正后与参考轨迹做比较,对滚动时域下的目标函数进行优化,得到当前时刻的控制输入,并将其作用于系统,完成此时刻的控制任务。在下一时刻,重复进行上述控制过程,实现滚动优化。
MPC技术最初是为满足电力、石油等行业的控制需要而出现的,经过几十年的蓬勃发展已经在化工、轻工、汽车和航空等许多领域得到成功的应用,并取得显著的经济效益[2]。
模型预测控制能有效弥补现代控制理论面对复杂受控对象时无法避免的不足之处,成为现代过程控制中的典范,在工业实践中具有较成功的应用性,主要原因在于:
1)MPC能够很自然地处理多变量控制问题;
2)MPC能够考虑执行器的能力约束;
3)MPC相较于通常的控制方法,其更能允许系统在接近约束的区域内运行,这能带来较为经济的运行方案;
4)MPC具有易调节、直观的特点。
MPC的基本原理
MPC技术是一种有限时域滚动优化控制策略,具有三大机理:基于模型的预测
、滚动式优化
和反馈校正
。其原理结构示意图如下。其中滚动式优化是MPC技术的核心机理,其优化过程不是一次离线完成,而是在有限的移动时间间隔内反复在线进行,是一种典型的智能式思维模式,类似于人脑的活动。滚动优化可能无法得到全局最优解,但优化的滚动实施却能顾及由于模型失配、时变、干扰等引起的不确定性,及时弥补这些因素造成的影响,并始终把新的优化建立在实际过程的基础上。
MPC中采用的预测模型通常只能粗略描述对象的动态特性,由于实际系统中存在非线性、时变、模型失配、干扰等因素,基于不变模型的预测肯定和实际有偏差,因此反馈校正是必需的。滚动优化只有建立在反馈校正的基础上,才能体现出优越性。
y
s
y_s~
ys 系统输出设定值
y
y~~
y 系统的实际输出
u
u~~
u 经过性能指标优化后得出的系统输入
y
r
y_r
yr 根据
y
s
y_s
ys 和
y
y
y 求得的参考轨迹
y
m
y_m
ym 预测模型的输出
y
p
y_p
yp 经过反馈校正后的预测输出
MPC的优化策略为如下的二次型目标函数:
m
i
n
Δ
u
(
k
+
j
)
J
=
∑
i
=
1
H
p
∥
y
p
(
k
+
i
∣
k
)
−
y
r
(
k
+
i
)
∥
Q
(
i
)
2
+
∑
j
=
0
H
u
−
1
∥
Δ
(
k
+
j
)
∥
R
(
j
)
2
min_{\Delta u(k+j)}J=\sum_{i=1}^{H_p}\parallel y_p(k+i|k)-y_r(k+i)\parallel^2_{Q_{(i)}}+\sum_{j=0}^{H_u-1}\parallel \Delta(k+j)\parallel^2_{R_{(j)}}
minΔu(k+j)J=i=1∑Hp∥yp(k+i∣k)−yr(k+i)∥Q(i)2+j=0∑Hu−1∥Δ(k+j)∥R(j)2
H
p
H_p~
Hp 预测时域
H
u
H_u~
Hu 控制时域
y
p
(
k
+
i
∣
k
)
y_p(k+i|k)
yp(k+i∣k) 经过反馈校正后的预测输出
y
r
(
k
+
i
)
y_r(k+i)
yr(k+i) 系统输出的未来参考轨迹
Δ
u
(
k
+
j
)
\Delta u(k+j)
Δu(k+j) 待求得未来输入增量
Q
(
i
)
Q_{(i)}
Q(i)与
R
(
j
)
R_{(j)}
R(j) 已知的权重矩阵
模型预测控制的发展
20世纪60年代Propoi首先在开环最优反馈背景下提出了MPC的滚动时域控制策略[3,4]。20世纪80年代MPC得到蓬勃发展,涌现出不同的算法种类,这些算法按基本结构模式大致可分为如下三类:
- 基于非参数模型的预测控制算法。主要代表为Cutler & Ramaker
基于有限阶跃响应
提出的动态矩阵控制(Dynamic Matrix Control, DMC)
[5,6] 和 Rouhani&Mehra 基于有限脉冲响应
提出的模型算法控制(Model Algorithm Control, MAC)
[7]。自1974年起,DMC作为一种有约束的多变量优化算法应用于美国Shell石油公司的生产装置中。 - 与经典自适应控制相结合的一类长程控制算法。主要有Clarke等人提出的基于受控自回归积分滑动平均参数模型基础的
广义预测控制
[8,9],Lelic等人提出的广义预测极点配置控制
[10],Ydstie提出的扩散时域自适应控制
[11],De Keyser提出的扩散时域预测自适应控制
[12]。此类模型大多用于输入/输出模型描述的系统,是长时段多步优化,适用于时滞和非最小相位对象,能够起到改善控制性能和模型失配的鲁棒性。 - 基于结构设计不同的预测控制算法。主要有Garcia等人提出的内模控制[13],Brosilow等人提出的推理控制[14],Kwon等人构造的基于状态空间的模型[15]
非线性MPC
大部分工业控制都带有约束,并具有非线性特性。非线性MPC在工业控制中具有广阔的应用前景。对于MPC的模型而言,重要的是其预测系统未来动态的功能。因此,预测模型可以是机理或实验的,时间连续或离散的,确定性或随机的。基于不同形式的模型,非线性MPC可分为以下几类:
1、基于机理模型的非线性MPC
机理模型即根据被控对象的物理特性所建立的微分方程模型。建立机理模型需对被控对象有透彻的了解,若系统工艺复杂,关联因素多,则机理模型的建立往往难度较大。
2、基于实验模型的非线性MPC
实验模型通常指结构确定而参数需经实验辨识的模型。
3、基于智能模型的非线性MPC
智能模型如Fuzzy模型、神经网络模型。
4、基于线性化模型的非线性MPC
其原理为将非线性机理模型在每个采样时刻线性化。基于线性化模型的非线性MPC优化计算简单,实时性好,但其缺点是尽管每个采样时刻都采用新的线性化模型,系统动态信息的丢失是难免的。由于在线更换模型很难保证每个采样时刻优化问题的可行性,在线性化多模型MPC中,操作区域的划分与多少将直接影响算法的实时性及控制性能。
MPC的理论性研究进展
MPC在应用领域取得的成果远比其在理论分析上的成果要多,主要是因为以大范围输出预测为基础的在线滚动优化策略,使得MPC的闭环传递函数非常复杂,其主要涉及参数都是以隐含的方式出现在闭环传递函数中,因此难以进行深入的解析分析。自20世纪90年代起,MPC在理论上取得了突飞猛进的进展。
- Mayne通过设定终端等式约束,建立了非线性MPC的稳定性理论[16].
- Rawlings等人研究了带约束MPC的稳定性,并讨论了可行性与稳定性的关系[17].
- Scokaert等人指出MPC稳定性的结果几乎可以从可行性直接退出[18].
- Zheng和Morari考虑了压缩MPC策略,使原来优化过程中的压缩约束鲁棒化[19].
- 席裕庚等较为系统地综述和评价了预测控制性能方面的理论研究[20].
内容补充
MPC的最主要优势就是以最优的方式处理问题中的约束条件,缺点为难以处理模型中的不确定性。
参考文献
[1] 舒迪前,预测控制系统及其应用,北京:机械工业出版社,1996.
[2] Qin S.J., Badgwell T.A., A survey of industrial model predictive control technology, Control Engineering Practice, 2003, Vol. 11, 733-764.
[3] Propoi A I. Use of LP Methodsfor Synthesizing Sampled-Data Automatic Systems. Automn Remote COntrol, 1963, 24.
[4] García, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory and practice—A survey. Automatica, 25(3), 335–348. doi:10.1016/0005-1098(89)90002-2.
[5] Cutler C. R., Ramaker B. L., Dynamic matrix control-A computer control algorithm, AICHE 86th National Meeting, Houston, TX, 1979.
[6] Cutler C. R., Ramaker B. L., Dynamic matrix control-A computer control algorithm, Proceedings of Joint Automatic Control Conference, San Francisco, California, 1980.
[7] Rouhani R., Mehra R.K., Model Algorithm Control Basic Theoretical Properties, Automatica, 1982, 18(4): 401-414.
[8] Clarke D.W., Mohtadi C., Tuffs P.S., Generalized predictive control Part I, The basic algorithm, Automatica, 1987, 23, 137-148.
[9] Clarke D.W., Mohtadi C., Tuffs P.S., Generalized predictive control-Part II, Extensions and Interpretations, Automatica, 1987, 23, 149-160.
[10] Lelic M.,A., Zarrop M.B., Generalized pole palcement self-tuning controller, International Journal of Control, 1987, 46(2), 574-568.
[11] Ydstie B.E., Extended horizon adaptive control, Proceedings of the 9th IFAC World Congress, 1984, 2, 911-915.
[12] De Keyser R.M.C., Van Cauwenberghe A.R., Self-tuning multistep, predictor application, Automatica, 1981, 17(1), 167-174.
[13] Garcia C.E., Morari M., Internal model control, a unifying review and some new results, Industrial & Engineering Chemistry process design and development, 1982, 21(2), 308-323.
[14] Brosilow C.B., Joseph B., Inferential control of processes. AICHE Journal, 1978, 24(3), 485-509.
[15] Kwon W.H., Byun D.G., Receding horizon tracking control as a predictive pontrol and its stability properties, International Journal of Control, 1989, 50(5), 1807-1824.
[16] Mayne D.Q., Michalska H., Receding horizon control of nonlinear systems, IEEE transactions on automatic control, 1990, 35(7), 814-824.
[17] Rawlings J.B., Muske K.R., The stability of constrained receding horizon control, IEEE transactions on Automatic control, 1993, 38(10), 1512-1516.
[18] Scokaert P.M., Clarke D.W., Stability and feasibility in constrained predictive control, Advances in model-based predictive control, Oxford: Oxford University Press, 1994, 217-229.
[19] Zheng A., Morari M., Robust control of linear time invariant systems with constraints, AICHE Annual Meeting, San Francisco, 1994.
[20] 席裕庚, 耿晓军, 陈虹, 预测控制性能研究的新进展,控制理论与应用, 2000, 17(4), 469-475.