rdkit 对肽链 C 端及 N 端检索以及子结构替换

本文介绍如何使用RDKit处理多肽链的N端和C端修饰,包括通过文字描述自动处理末端修饰的方法。重点讲解了如何精确定位肽链末端并进行子结构替换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍利用 rdkit 处理多肽链的末端修饰,主要是需要根据文字描述的 N 端及 C 端修饰利用 ReplaceSubstructs 自动处理,难点在于子结构搜索。

首先读入多肽链,下面是示例:

smi='CC[C@H](C)[C@H](NC(=O)[C@H](CO)NC(=O)CN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](Cc1ccccc1)C(=O)O'
mol=Chem.MolFromSmiles(smi)

以序列描述也可以,同时可以将序列转化成 SMILES:

def transform(seq):
    if (pd.isnull(seq)):
        return None
    else:
        try:
            mol = Chem.MolFromSequence(seq)
            smi = Chem.MolToSmiles(mol)
            return smi
        except:
            print("转换失败",seq)
            return '###{}'.format(seq)

将 seq 存储在 dataframe 中,利用下面的方法即可自动转换:

df['SMILES']=df['SEQUENCE'].map(transform)

假设 C 端修饰是将羧基的OH替换为 Au 及 Se (当然没有这种修饰,这里只是假设):
在这里插入图片描述
在这里插入图片描述
自动替换子结构需要先精准定位到肽链的 C 末端,再进行子结构替换:

patt=Chem.MolFromSmarts('[$([OH]C(=O)CN)]') #这里是关键
rep=Chem.MolFromSmiles('[Se][Au]')
Chem.MolToSmiles(AllChem.ReplaceSubstructs(mol,patt,rep)[0],canonical=True)

运行上面代码即可得到修饰之后的多肽链 SMILES
同理 N 端修饰类似处理,以 NH2 做以下修饰为例:
在这里插入图片描述
在这里插入图片描述

patt1=Chem.MolFromSmarts('[$([NH2]CC(=O))]') #N末端未成环
patt2=Chem.MolFromSmarts('C1CCCN1') 		 #N末端成环
rep1=Chem.MolFromSmiles('[NH]C(=O)(CCCCCCCCCCNC(=O)COc1ccc(Cl)cc1Cl)')
mol=AllChem.ReplaceSubstructs(Chem.MolFromSmiles(seqList[i]),patt1,rep1)
Chem.MolToSmiles(mol[0],canonical=True)

运行上面代码即可得到多肽 N 端做如上修饰后的 SMILES

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值