Graph Representation

reading notes of《Molecular Graph Representation Learning and Generation for Drug Discovery》


文章目录

  • The typical GNN architecture that relies on local aggregation operations can often miss higher-order graph information. In the context of molecular problems, locality can prove myopic, as longer-range dependencies are important for many biological prediction targets. To remedy this, we propose Path-Augmented Graph Transformer Networks (PAGTN) that are explicitly built on longer-range dependencies in graph-structured data.
  • For large enough graphs, GCNs may fail to capture these long-range dependencies entirely. Our PAGTN model can more easily capture these dependencies because every node attends to all other nodes in the graph.
  • GCN models necessitate several layers to propagate information and learn these substructures. The advantage of our model is that this interaction can be learned within a single layer.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 图表示学习是一种机器学习技术,旨在将图形数据转换为低维向量表示,以便于计算机进行处理和分析。这种技术可以应用于各种领域,如社交网络分析、生物信息学、推荐系统等。通过图表示学习,可以更好地理解和分析图形数据,从而提高数据处理和应用的效率。 ### 回答2: 图表示学习是一种机器学习的方法,用于学习和提取图结构中的有用信息和特征。图表示学习的目标是将图中的节点和边转化为向量表达,从而实现对图结构的分析和预测。 图表示学习可以应用于各种各样的领域,如社交网络分析、生物信息学、推荐系统等。通过学习图中节点的向量表达,我们可以对节点进行聚类、分类、推荐等任务。同时,图表示学习还可以揭示图结构中的隐藏关系和模式,帮助我们理解和挖掘图中的信息。 图表示学习有多种方法和技术。其中一种常用的方法是基于图的随机游走。通过模拟随机游走的过程,我们可以收集节点的邻居信息,并根据节点的邻居关系来学习节点的向量表达。还有一种常用的方法是基于图的图卷积网络。这种方法利用图结构的局部连接性来学习节点的向量表达,通过多层图卷积网络可以逐步提取节点的更高级别的特征。 图表示学习在图挖掘和数据分析领域具有广泛的应用和研究价值。它可以帮助我们理解和解释复杂的图结构,从而更好地处理和分析图数据。同时,图表示学习还能够应对大规模和高维度的图数据,提高计算效率和准确性。未来,我们可以进一步研究和发展图表示学习的方法和技术,以应对图数据分析的挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值