我想,矩估计法(Method of Moments)的本质确实是通过样本矩得到总体矩,进而求出参数 θ \theta θ。让我们详细解释一下这个过程。
矩估计法的步骤
-
确定样本矩:
- 首先,从样本数据中计算出样本矩。对于一个随机变量 X X X,第 k k k阶样本矩定义为:
m k = 1 n ∑ i = 1 n X i k m_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k mk=n1i=1∑nXik
- 首先,从样本数据中计算出样本矩。对于一个随机变量 X X X,第 k k k阶样本矩定义为:
-
建立总体矩的方程:
- 确定总体矩的表达式,通常用模型参数 θ \theta θ表示。例如,对于总体随机变量 X X X,第 k k k阶矩为 E [ X k ] E[X^k] E[Xk]。
-
建立方程组:
- 将样本矩等于总体矩,形成关于参数 θ \theta θ的方程组。对于第一个和第二个矩:
m 1 = E [ X ] m_1 = E[X] m1=E[X]
m 2 = E [ X 2 ] m_2 = E[X^2] m2=E[X
- 将样本矩等于总体矩,形成关于参数 θ \theta θ的方程组。对于第一个和第二个矩: