矩估计法(Method of Moments)的本质:通过样本矩得到总体矩,进而求出参数θ

我想,矩估计法(Method of Moments)的本质确实是通过样本矩得到总体矩,进而求出参数 θ \theta θ。让我们详细解释一下这个过程。

矩估计法的步骤

  1. 确定样本矩

    • 首先,从样本数据中计算出样本矩。对于一个随机变量 X X X,第 k k k阶样本矩定义为:
      m k = 1 n ∑ i = 1 n X i k m_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k mk=n1i=1nXik
  2. 建立总体矩的方程

    • 确定总体矩的表达式,通常用模型参数 θ \theta θ表示。例如,对于总体随机变量 X X X,第 k k k阶矩为 E [ X k ] E[X^k] E[Xk]
  3. 建立方程组

    • 将样本矩等于总体矩,形成关于参数 θ \theta θ的方程组。对于第一个和第二个矩:
      m 1 = E [ X ] m_1 = E[X] m1=E[X]
      m 2 = E [ X 2 ] m_2 = E[X^2] m2=E[X
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值