08.样本矩
首先说明一些记号:
设 X 1 , X 2 , … , X n i.i.d. F X_{1}, X_{2}, \ldots, X_{n}{ }^{\text {i.i.d. }} F X1,X2,…,Xni.i.d. F
-
总体矩: α k = E ( X 1 k ) , α 1 = μ \alpha_{k}=\mathrm{E}\left(X_{1}^{k}\right), \alpha_{1}=\mu αk=E(X1k),α1=μ
-
总体中心矩: μ k = E { ( X 1 − μ ) k } , μ 2 = σ 2 \mu_{k}=\mathrm{E}\left\{\left(X_{1}-\mu\right)^{k}\right\}, \mu_{2}=\sigma^{2} μk=E{(X1−μ)k},μ2=σ2
-
样本矩: a k = 1 n ∑ i = 1 n X i k , a 1 = X ˉ n a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, a_{1}=\bar{X}_{n} ak=n1∑i=1nXik,a1=Xˉn
-
样本中心矩: m k = 1 n ∑ i = 1 n ( X i − X ˉ n ) k , m 2 = S n 2 m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}, m_{2}=S_{n}^{2} mk=n1∑i=1n(Xi−Xˉn)k,m2=Sn2
样本矩
样本矩可看作 n n n个 i . i . d . i.i.d. i.i.d.随机变量的均值。在假设任意阶矩有限的条件下,由大数定律和中心极限定理可以得到如下结论:
定理 8.1:
E ( a k ) = α k , Var ( a k ) = α 2 k − α k 2 n \mathrm{E}\left(a_{k}\right)=\alpha_{k}, \operatorname{Var}\left(a_{k}\right)=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} E(ak)=αk,Var(ak)=nα2k−αk2
a k → p α k a_{k} \stackrel{p}{\rightarrow} \alpha_{k} ak→pαk
a k → w p 1 α k {a_{k} \stackrel{w p 1}{\rightarrow}} \alpha_{k} ak→wp1αk
n ( a 1 − α 1 , … , a k − α k ) ⊤ → d N k ( 0 , Σ ) \sqrt{n}\left(a_{1}-\alpha_{1}, \ldots, a_{k}-\alpha_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \Sigma) n(a1−α1,…,ak−αk)⊤→dNk(0,Σ), 其中 Σ = ( σ j 1 j 2 ) k × k \Sigma=\left(\sigma_{j_{1} j_{2}}\right)_{k \times k} Σ=(σj1j2)k×k , σ j 1 j 2 = α j 1 + j 2 − α j 1 α j 2 \sigma_{j_{1} j_{2}}=\alpha_{j_{1}+j_{2}}-\alpha_{j_{1}} \alpha_{j_{2}} σj1j2=αj1+j2−αj1αj2
样本中心距
而对于样本中心距而言,其求和的每一项并不具有独立性。由此我们先构造另一相关统计量: b k = 1 n ∑ i = 1 n ( X i − μ ) k b_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{k} bk=n1∑i=1n(Xi−μ)k, b k b_k bk为 i . . i . d . i..i.d. i..i.d.随机向量的均值,可以得到类似定理8.1的结论。以下给出引理8.2:
引理8.2:
-
E ( b k ) = μ k , Var ( b k ) = μ 2 k − μ k 2 n \mathrm{E}\left(b_{k}\right)=\mu_{k}, \operatorname{Var}\left(b_{k}\right)=\frac{\mu_{2 k}-\mu_{k}^{2}}{n} E(bk)=μk,Var(bk)=nμ2k−μk2
-
b k → p μ k b_{k} \stackrel{p}{\rightarrow} \mu_{k} bk→pμk
-
b k → w p 1 μ k \quad b_{k} \stackrel{w p 1}{\rightarrow} \mu_{k} bk→wp1μk
-
n ( b 1 − μ 1 , … , b k − μ k ) ⊤ → d N k ( 0 , Σ ~ ) \sqrt{n}\left(b_{1}-\mu_{1}, \ldots, b_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \tilde{\Sigma}) n(b1−μ1,…,bk−μk)⊤→dNk(0,Σ~), where Σ ~ = ( σ ~ j 1 j 2 ) k × k \tilde{\Sigma}=\left(\tilde{\sigma}_{j_{1} j_{2}}\right)_{k \times k} Σ~=(σ~j1j2)k×k with σ ~ j 1 j 2 = μ j 1 + j 2 − μ j 1 μ j 2 \tilde{\sigma}_{j_{1} j_{2}}=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}} σ~j1j2=μj1+j2−μj1μj2
考虑到
b
k
b_k
bk具有较好的性质,我们尝试将
b
k
b_k
bk与
m
k
m_k
mk建立联系
m
k
=
1
n
∑
i
=
1
n
(
X
i
−
X
ˉ
n
)
k
=
1
n
∑
i
=
1
n
∑
j
=
0
k
C
k
j
(
X
i
−
μ
)
j
(
μ
−
X
ˉ
n
)
k
−
j
,
m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{k} C_{k}^{j}\left(X_{i}-\mu\right)^{j}\left(\mu-\bar{X}_{n}\right)^{k-j},
mk=n1i=1∑n(Xi−Xˉn)k=n1i=1∑nj=0∑kCkj(Xi−μ)j(μ−Xˉn)k−j,
i.e.,
m
k
=
∑
j
=
0
k
C
k
j
(
−
1
)
k
−
j
b
j
b
1
k
−
j
m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j}
mk=j=0∑kCkj(−1)k−jbjb1k−j
由此可以得到定理8.3:
定理8.3:
- m k → w p 1 μ k m_{k} \stackrel{w p 1}{\rightarrow} \mu_{k} mk→wp1μk
- n ( m 2 − μ 2 , … , m k − μ k ) ⊤ → d N k − 1 ( 0 , Σ ∗ ) \sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k-1}\left(0, \Sigma^{*}\right) n(m2−μ2,…,mk−μk)⊤→dNk−1(0,Σ∗), 其中
Σ ∗ = ( σ j 12 ∗ ) ( k − 1 ) × ( k − 1 ) \Sigma^{*}=\left(\sigma_{j_{12}}^{*}\right)(k-1) \times(k-1) Σ∗=(σj12∗)(k−1)×(k−1) ,
σ j j j ∗ = μ j 1 + j 2 + 2 − μ j 1 + 1 μ j 2 + 1 − ( j 1 + 1 ) μ j 1 μ j 2 + 2 − ( j 2 + 1 ) μ j 2 μ j 1 + 2 + ( j 1 + 1 ) ( j 2 + 1 ) μ j 1 μ j 2 μ 2 \sigma_{j j j}^{*}=\mu_{j_{1}+j_{2}+2}-\mu_{j_{1}+1} \mu_{j_{2}+1}-\left(j_{1}+\right.1) \mu_{j_{1}} \mu_{j_{2}+2}-\left(j_{2}+1\right) \mu_{j_{2}} \mu_{j_{1}+2}+\left(j_{1}+1\right)\left(j_{2}+1\right) \mu_{j_{1}} \mu_{j_{2}} \mu_{2} σjjj∗=μj1+j2+2−μj1+1μj2+1−(j1+1)μj1μj2+2−(j2+1)μj2μj1+2+(j1+1)(j2+1)μj1μj2μ2
证明:
首先注意到 μ 1 = 0 \mu_1=0 μ1=0
由CMT可知: m k = ∑ j = 0 k C k j ( − 1 ) k − j b j b 1 k − j → w p 1 ∑ j = 0 k C k j ( − 1 ) k − j μ j μ 1 k − j = μ k m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j}\stackrel{w p 1}{\rightarrow}\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} \mu_{j} \mu_{1}^{k-j}=\mu_k mk=∑j=0kCkj(−1)k−jbjb1k−j→wp1∑j=0kCkj(−1)k−jμjμ1k−j=μk,则(1)成立
将
m
k
m_k
mk改写为
m
k
=
∑
j
=
0
k
C
k
j
(
−
1
)
k
−
j
b
j
b
1
k
−
j
=
b
k
−
k
b
k
−
1
b
1
+
∑
j
=
0
k
−
2
C
k
j
(
−
1
)
k
−
j
b
j
b
1
k
−
j
\begin{aligned} m_{k} &=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \\ &=b_{k}-k b_{k-1} b_{1}+\sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \end{aligned}
mk=j=0∑kCkj(−1)k−jbjb1k−j=bk−kbk−1b1+j=0∑k−2Ckj(−1)k−jbjb1k−j
有
n
(
m
k
−
μ
k
)
=
n
(
b
k
−
μ
k
)
−
k
b
k
−
1
n
b
1
+
n
b
1
∑
j
=
0
k
−
2
C
k
j
(
−
1
)
k
−
j
b
j
b
1
k
−
j
−
1
=
n
(
b
k
−
μ
k
)
−
k
μ
k
−
1
n
b
1
+
o
p
(
1
)
=
n
(
b
k
−
μ
k
−
k
μ
k
−
1
b
1
)
+
o
p
(
1
)
\begin{aligned} &\sqrt{n}\left(m_{k}-\mu_{k}\right) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k b_{k-1} \sqrt{n} b_{1}+\sqrt{n} b_{1} \sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j-1} \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k \mu_{k-1} \sqrt{n} b_{1}+o_{p}(1) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)+o_{p}(1) \end{aligned}
n(mk−μk)=n(bk−μk)−kbk−1nb1+nb1j=0∑k−2Ckj(−1)k−jbjb1k−j−1=n(bk−μk)−kμk−1nb1+op(1)=n(bk−μk−kμk−1b1)+op(1)
则
n
(
m
2
−
μ
2
,
…
,
m
k
−
μ
k
)
⊤
=
n
(
b
2
−
μ
2
−
2
μ
1
b
1
,
…
,
b
k
−
μ
k
−
k
μ
k
−
1
b
1
)
⊤
=
n
−
1
/
2
∑
i
=
1
n
(
Z
i
2
,
…
,
Z
i
k
)
⊤
\begin{aligned} &\sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \\ &\quad=\sqrt{n}\left(b_{2}-\mu_{2}-2 \mu_{1} b_{1}, \ldots, b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)^{\top} \\ &\quad=n^{-1 / 2} \sum_{i=1}^{n}\left(Z_{i 2}, \ldots, Z_{i k}\right)^{\top} \end{aligned}
n(m2−μ2,…,mk−μk)⊤=n(b2−μ2−2μ1b1,…,bk−μk−kμk−1b1)⊤=n−1/2i=1∑n(Zi2,…,Zik)⊤
其中
Z
i
j
=
(
X
i
−
μ
)
j
−
μ
j
−
j
μ
j
−
1
(
X
i
−
μ
)
Z_{i j}=\left(X_{i}-\mu\right)^{j}-\mu_{j}-j \mu_{j-1}\left(X_{i}-\mu\right)
Zij=(Xi−μ)j−μj−jμj−1(Xi−μ) ,
j
=
2
,
…
,
k
j=2, \ldots, k
j=2,…,k
计算可得:
E
(
Z
i
j
)
=
0
\mathrm{E}\left(Z_{i j}\right)=0
E(Zij)=0
Cov
(
Z
i
j
1
,
Z
i
j
2
)
=
μ
j
1
+
j
2
−
μ
j
1
μ
j
2
−
j
1
μ
j
1
−
1
μ
j
2
+
1
−
j
2
μ
j
2
−
1
μ
j
1
+
1
+
j
1
j
2
μ
j
1
−
1
μ
j
2
−
1
μ
2
\operatorname{Cov}\left(Z_{i j_{1}}, Z_{i j_{2}}\right)=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}}-j_{1} \mu_{j_{1}-1} \mu_{j_{2}+1}-j_{2} \mu_{j_{2}-1} \mu_{j_{1}+1}+j_{1} j_{2} \mu_{j_{1}-1} \mu_{j_{2}-1} \mu_{2}
Cov(Zij1,Zij2)=μj1+j2−μj1μj2−j1μj1−1μj2+1−j2μj2−1μj1+1+j1j2μj1−1μj2−1μ2
综上则(2)成立,证毕。