极限理论总结06:样本矩与样本中心距

08.样本矩

首先说明一些记号:

X 1 , X 2 , … , X n i.i.d.  F X_{1}, X_{2}, \ldots, X_{n}{ }^{\text {i.i.d. }} F X1,X2,,Xni.i.d. F

  • 总体矩: α k = E ( X 1 k ) , α 1 = μ \alpha_{k}=\mathrm{E}\left(X_{1}^{k}\right), \alpha_{1}=\mu αk=E(X1k),α1=μ

  • 总体中心矩: μ k = E { ( X 1 − μ ) k } , μ 2 = σ 2 \mu_{k}=\mathrm{E}\left\{\left(X_{1}-\mu\right)^{k}\right\}, \mu_{2}=\sigma^{2} μk=E{(X1μ)k},μ2=σ2

  • 样本矩: a k = 1 n ∑ i = 1 n X i k , a 1 = X ˉ n a_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, a_{1}=\bar{X}_{n} ak=n1i=1nXik,a1=Xˉn

  • 样本中心矩: m k = 1 n ∑ i = 1 n ( X i − X ˉ n ) k , m 2 = S n 2 m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}, m_{2}=S_{n}^{2} mk=n1i=1n(XiXˉn)k,m2=Sn2

样本矩

样本矩可看作 n n n i . i . d . i.i.d. i.i.d.随机变量的均值。在假设任意阶矩有限的条件下,由大数定律和中心极限定理可以得到如下结论:

定理 8.1:

  • E ( a k ) = α k , Var ⁡ ( a k ) = α 2 k − α k 2 n \mathrm{E}\left(a_{k}\right)=\alpha_{k}, \operatorname{Var}\left(a_{k}\right)=\frac{\alpha_{2 k}-\alpha_{k}^{2}}{n} E(ak)=αk,Var(ak)=nα2kαk2

  • a k → p α k a_{k} \stackrel{p}{\rightarrow} \alpha_{k} akpαk

  • a k → w p 1 α k {a_{k} \stackrel{w p 1}{\rightarrow}} \alpha_{k} akwp1αk

  • n ( a 1 − α 1 , … , a k − α k ) ⊤ → d N k ( 0 , Σ ) \sqrt{n}\left(a_{1}-\alpha_{1}, \ldots, a_{k}-\alpha_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \Sigma) n (a1α1,,akαk)dNk(0,Σ), 其中 Σ = ( σ j 1 j 2 ) k × k \Sigma=\left(\sigma_{j_{1} j_{2}}\right)_{k \times k} Σ=(σj1j2)k×k σ j 1 j 2 = α j 1 + j 2 − α j 1 α j 2 \sigma_{j_{1} j_{2}}=\alpha_{j_{1}+j_{2}}-\alpha_{j_{1}} \alpha_{j_{2}} σj1j2=αj1+j2αj1αj2

样本中心距

而对于样本中心距而言,其求和的每一项并不具有独立性。由此我们先构造另一相关统计量: b k = 1 n ∑ i = 1 n ( X i − μ ) k b_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{k} bk=n1i=1n(Xiμ)k b k b_k bk i . . i . d . i..i.d. i..i.d.随机向量的均值,可以得到类似定理8.1的结论。以下给出引理8.2:

引理8.2:

  • E ( b k ) = μ k , Var ⁡ ( b k ) = μ 2 k − μ k 2 n \mathrm{E}\left(b_{k}\right)=\mu_{k}, \operatorname{Var}\left(b_{k}\right)=\frac{\mu_{2 k}-\mu_{k}^{2}}{n} E(bk)=μk,Var(bk)=nμ2kμk2

  • b k → p μ k b_{k} \stackrel{p}{\rightarrow} \mu_{k} bkpμk

  • b k → w p 1 μ k \quad b_{k} \stackrel{w p 1}{\rightarrow} \mu_{k} bkwp1μk

  • n ( b 1 − μ 1 , … , b k − μ k ) ⊤ → d N k ( 0 , Σ ~ ) \sqrt{n}\left(b_{1}-\mu_{1}, \ldots, b_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k}(\mathbf{0}, \tilde{\Sigma}) n (b1μ1,,bkμk)dNk(0,Σ~), where Σ ~ = ( σ ~ j 1 j 2 ) k × k \tilde{\Sigma}=\left(\tilde{\sigma}_{j_{1} j_{2}}\right)_{k \times k} Σ~=(σ~j1j2)k×k with σ ~ j 1 j 2 = μ j 1 + j 2 − μ j 1 μ j 2 \tilde{\sigma}_{j_{1} j_{2}}=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}} σ~j1j2=μj1+j2μj1μj2

考虑到 b k b_k bk具有较好的性质,我们尝试将 b k b_k bk m k m_k mk建立联系
m k = 1 n ∑ i = 1 n ( X i − X ˉ n ) k = 1 n ∑ i = 1 n ∑ j = 0 k C k j ( X i − μ ) j ( μ − X ˉ n ) k − j , m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=0}^{k} C_{k}^{j}\left(X_{i}-\mu\right)^{j}\left(\mu-\bar{X}_{n}\right)^{k-j}, mk=n1i=1n(XiXˉn)k=n1i=1nj=0kCkj(Xiμ)j(μXˉn)kj,
i.e.,
m k = ∑ j = 0 k C k j ( − 1 ) k − j b j b 1 k − j m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} mk=j=0kCkj(1)kjbjb1kj

由此可以得到定理8.3:

定理8.3:

  • m k → w p 1 μ k m_{k} \stackrel{w p 1}{\rightarrow} \mu_{k} mkwp1μk
  • n ( m 2 − μ 2 , … , m k − μ k ) ⊤ → d N k − 1 ( 0 , Σ ∗ ) \sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \stackrel{d}{\rightarrow} N_{k-1}\left(0, \Sigma^{*}\right) n (m2μ2,,mkμk)dNk1(0,Σ), 其中
    Σ ∗ = ( σ j 12 ∗ ) ( k − 1 ) × ( k − 1 ) \Sigma^{*}=\left(\sigma_{j_{12}}^{*}\right)(k-1) \times(k-1) Σ=(σj12)(k1)×(k1)
    σ j j j ∗ = μ j 1 + j 2 + 2 − μ j 1 + 1 μ j 2 + 1 − ( j 1 + 1 ) μ j 1 μ j 2 + 2 − ( j 2 + 1 ) μ j 2 μ j 1 + 2 + ( j 1 + 1 ) ( j 2 + 1 ) μ j 1 μ j 2 μ 2 \sigma_{j j j}^{*}=\mu_{j_{1}+j_{2}+2}-\mu_{j_{1}+1} \mu_{j_{2}+1}-\left(j_{1}+\right.1) \mu_{j_{1}} \mu_{j_{2}+2}-\left(j_{2}+1\right) \mu_{j_{2}} \mu_{j_{1}+2}+\left(j_{1}+1\right)\left(j_{2}+1\right) \mu_{j_{1}} \mu_{j_{2}} \mu_{2} σjjj=μj1+j2+2μj1+1μj2+1(j1+1)μj1μj2+2(j2+1)μj2μj1+2+(j1+1)(j2+1)μj1μj2μ2

证明:

首先注意到 μ 1 = 0 \mu_1=0 μ1=0

由CMT可知: m k = ∑ j = 0 k C k j ( − 1 ) k − j b j b 1 k − j → w p 1 ∑ j = 0 k C k j ( − 1 ) k − j μ j μ 1 k − j = μ k m_{k}=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j}\stackrel{w p 1}{\rightarrow}\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} \mu_{j} \mu_{1}^{k-j}=\mu_k mk=j=0kCkj(1)kjbjb1kjwp1j=0kCkj(1)kjμjμ1kj=μk,则(1)成立

m k m_k mk改写为
m k = ∑ j = 0 k C k j ( − 1 ) k − j b j b 1 k − j = b k − k b k − 1 b 1 + ∑ j = 0 k − 2 C k j ( − 1 ) k − j b j b 1 k − j \begin{aligned} m_{k} &=\sum_{j=0}^{k} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \\ &=b_{k}-k b_{k-1} b_{1}+\sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j} \end{aligned} mk=j=0kCkj(1)kjbjb1kj=bkkbk1b1+j=0k2Ckj(1)kjbjb1kj

n ( m k − μ k ) = n ( b k − μ k ) − k b k − 1 n b 1 + n b 1 ∑ j = 0 k − 2 C k j ( − 1 ) k − j b j b 1 k − j − 1 = n ( b k − μ k ) − k μ k − 1 n b 1 + o p ( 1 ) = n ( b k − μ k − k μ k − 1 b 1 ) + o p ( 1 ) \begin{aligned} &\sqrt{n}\left(m_{k}-\mu_{k}\right) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k b_{k-1} \sqrt{n} b_{1}+\sqrt{n} b_{1} \sum_{j=0}^{k-2} C_{k}^{j}(-1)^{k-j} b_{j} b_{1}^{k-j-1} \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}\right)-k \mu_{k-1} \sqrt{n} b_{1}+o_{p}(1) \\ &\quad=\sqrt{n}\left(b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)+o_{p}(1) \end{aligned} n (mkμk)=n (bkμk)kbk1n b1+n b1j=0k2Ckj(1)kjbjb1kj1=n (bkμk)kμk1n b1+op(1)=n (bkμkkμk1b1)+op(1)

n ( m 2 − μ 2 , … , m k − μ k ) ⊤ = n ( b 2 − μ 2 − 2 μ 1 b 1 , … , b k − μ k − k μ k − 1 b 1 ) ⊤ = n − 1 / 2 ∑ i = 1 n ( Z i 2 , … , Z i k ) ⊤ \begin{aligned} &\sqrt{n}\left(m_{2}-\mu_{2}, \ldots, m_{k}-\mu_{k}\right)^{\top} \\ &\quad=\sqrt{n}\left(b_{2}-\mu_{2}-2 \mu_{1} b_{1}, \ldots, b_{k}-\mu_{k}-k \mu_{k-1} b_{1}\right)^{\top} \\ &\quad=n^{-1 / 2} \sum_{i=1}^{n}\left(Z_{i 2}, \ldots, Z_{i k}\right)^{\top} \end{aligned} n (m2μ2,,mkμk)=n (b2μ22μ1b1,,bkμkkμk1b1)=n1/2i=1n(Zi2,,Zik)
其中 Z i j = ( X i − μ ) j − μ j − j μ j − 1 ( X i − μ ) Z_{i j}=\left(X_{i}-\mu\right)^{j}-\mu_{j}-j \mu_{j-1}\left(X_{i}-\mu\right) Zij=(Xiμ)jμjjμj1(Xiμ) , j = 2 , … , k j=2, \ldots, k j=2,,k

计算可得:

E ( Z i j ) = 0 \mathrm{E}\left(Z_{i j}\right)=0 E(Zij)=0
Cov ⁡ ( Z i j 1 , Z i j 2 ) = μ j 1 + j 2 − μ j 1 μ j 2 − j 1 μ j 1 − 1 μ j 2 + 1 − j 2 μ j 2 − 1 μ j 1 + 1 + j 1 j 2 μ j 1 − 1 μ j 2 − 1 μ 2 \operatorname{Cov}\left(Z_{i j_{1}}, Z_{i j_{2}}\right)=\mu_{j_{1}+j_{2}}-\mu_{j_{1}} \mu_{j_{2}}-j_{1} \mu_{j_{1}-1} \mu_{j_{2}+1}-j_{2} \mu_{j_{2}-1} \mu_{j_{1}+1}+j_{1} j_{2} \mu_{j_{1}-1} \mu_{j_{2}-1} \mu_{2} Cov(Zij1,Zij2)=μj1+j2μj1μj2j1μj11μj2+1j2μj21μj1+1+j1j2μj11μj21μ2

综上则(2)成立,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值