编者按
报童问题的原型是报童在观察需求之前决定要订购多少报纸的问题,其在订购过多或过少时会面临超量和不足成本。因此,报童问题的核心是如何在观察需求之前决定订购一个数量,考虑到超量和缺货成本。本文引用 G. Gallego (1994) 对报童问题的分析,讨论如何控制单一物品在单一周期内具有若干不同随机需求的库存问题。
1 基础模型
设 D D D为单周期随机需求,均值为 μ = E [ D ] \mu = E[D] μ=E[D],方差为 σ 2 = V [ D ] \sigma^2 = V[D] σ2=V[D]. 设 c c c为单位成本, p > c p > c p>c 为销售价格, s < c s < c s<c 为回收价值。如果订购了 Q Q Q个单位,则将出售 min ( Q , D ) \min(Q, D) min(Q,D)个单位,而 ( Q − D ) + = max ( Q − D , 0 ) (Q - D)^+ = \max(Q - D, 0) (Q−D)+=max(Q−D,0)个单位被回收。利润的表达式为:
π ( Q ) = p E [ min ( Q , D ) ] + s E [ ( Q − D ) + ] − c Q . \pi(Q) = pE[\min(Q, D)] + sE[(Q - D)^+] - cQ. π(Q)=pE[min(Q,D)]+sE[(Q−D)+]−cQ.
预期利润是确定的,其表达式为:
π ( Q ) = ( p − c ) μ − G ( Q ) , \pi(Q) = (p - c)\mu - G(Q), π(Q)=(p−c)μ−G(Q),
其中
G ( Q ) = ( c − s ) E [ ( Q − D ) + ] + ( p − c ) E [ ( D − Q ) + ] ≥ 0. G(Q) = (c - s)E[(Q - D)^+] + (p - c)E[(D - Q)^+] \geq 0. G(Q)=(c−s)E[(Q−D)+]+(p−c)E[(D−Q)+]≥0.
设 h = c − s h = c - s h=c−s 和 b = p − c b = p - c b=p−c, 其中 h h h为单位超量成本, b b b为单位缺货成本。有时缺货成本会被增加,以考虑未满足需求所产生的无形损失。因此,可将最大化 π ( Q ) \pi(Q) π(Q)的问题看作是最小化预期的超量和缺货成本 G ( Q ) G(Q) G(Q).
设 G d e t ( Q ) = h ( μ − Q ) + + b ( Q − μ ) + G^{det}(Q) = h(\mu - Q)^+ + b(Q - \mu)^+ Gdet(Q)=h(μ−Q)++b(Q−μ)+. 当需求 D D D是确定性时,即 Pr ( D = μ ) = 1 \Pr(D = \mu) = 1 Pr(D=μ)=1,该公式代表成本。显然,当 Q = μ Q = \mu Q=μ时, G det ( Q ) G^{\text{det}}(Q) Gdet(Q)最小,且 G det ( μ ) = 0 G^{\text{det}}(\mu) = 0 Gdet(μ)=0,因此 π det ( μ ) = ( p − c ) μ \pi^{\text{det}}(\mu) = (p - c)\mu πdet(μ)=(p−c)μ. 因此,报童问题仅在需求是随机的情况下有意义。而当 s = c s = c s=c 时,系统可以订购无限量,满足所有需求,并退回所有未售出的商品。
设 g ( x ) = h x + + b x − g(x) = hx^+ + bx^- g(x)=hx++bx−,那么 G ( Q ) G(Q) G(Q)可以表示为 G ( Q ) = E [ g ( Q − D ) ] G(Q) = E[g(Q - D)] G(Q)=E[g(Q−D)]. 由于 g g g是凸函数,并且线性变换和期望算子保持凸性,因此 G ( Q ) G(Q) G(Q)也是凸的。根据 Jensen’s 不等式 G ( Q ) ≥ G det ( Q ) G(Q) \geq G^{\text{det}}(Q) G(Q)≥Gdet(Q),
π ( Q ) ≤ π det ( Q ) ≤ π det ( μ ) = ( p − c ) μ \pi(Q) \leq \pi^{\text{det}}(Q) \leq \pi^{\text{det}}(\mu) = (p - c)\mu π(Q)≤πdet(Q)≤πdet(μ)=(p−c)μ
因此,预期利润低于确定性需求的情况。若 D D D的分布是连续的,则可以通过对 G G G求导并将其设为零来找到最优解。由于可以将导数和期望计算交换,得出
G ′ ( Q ) = h E δ ( Q − D ) − b E δ ( D − Q ) , G'(Q) = hE\delta(Q - D) - bE\delta(D - Q), G′(Q)=hEδ(Q−D)−bEδ(D−Q),
其中 δ ( x ) = 1 \delta(x) = 1 δ(x)=1;当 x > 0 x > 0 x>0时,否则为 0. 由于 E δ ( Q − D ) = Pr ( Q − D > 0 ) E\delta(Q - D) = \Pr(Q - D > 0) Eδ(Q−D)=