【R语言篇】流行病学常用统计分析方法大全&R包

描述性统计

目的:描述和总结数据集的主要特征。

R包:base, dplyr, ggplot2

频率比较(Chi-square、Fisher's Exact Test)

目的:比较不同组别的频率或比例。

R包:stats, epiR

t检验/ANOVA(方差分析)

目的:比较两个或多个组的均值。

R包:stats, aov, t.test

相关分析(Pearson、Spearman)

目的:评估两个连续变量间的关系强度。

R包:stats, Hmisc

回归分析(线性、逻辑回归等)

目的:探究变量间的关系。

R包:lm(线性回归)、glm(广义线性模型)

生存分析(Kaplan-Meier、Cox Proportional Hazards Model)

目的:分析时间到事件数据。

R包:survival, survminer

多层次模型(Mixed Effects Model)

目的:分析具有层次结构的数据。

R包:lme4, nlme

时间序列分析

目的:分析随时间变化的数据。

R包:forecast, ts

空间分析

目的:分析数据的地理或空间分布。

R包:sp, sf

元分析

目的:综合多项研究结果。

R包:meta, metafor

贝叶斯方法

目的:采用贝叶斯统计进行数据分析。

R包:rjags, Stan

因果推断方法(Propensity Score Matching等)

目的:估计特定干预或暴露的因果效应。

R包:MatchIt, causal

复杂采样和加权数据分析

目的:分析非简单随机抽样得到的数据。

R包:survey, weights

非参数方法(Mann-Whitney U test等)

目的:不依赖于数据分布假设的统计测试。

R包:wilcox.test(Mann-Whitney U Test)

长格式数据和重复测量数据分析

目的:分析在同一对象上重复测量的数据。

R包:nlme, lme4

聚类分析和主成分分析

目的:数据降维和群组识别。

R包:cluster, factoextra

机器学习和数据挖掘

目的:模式识别、分类和预测建模。

R包:caret, randomForest, e1071

网络分析

目的:分析社会网络或流行病学网络。

R包:sna, igraph

聚类分析

目的:识别相似特征的个体或事件,形成群组。

R包:clusterfactoextra

主成分分析(PCA)和因子分析

目的:降维,减少分析所需的变量数量,同时保留最多的原始数据变异。

R包:prcompfactoextra

对应分析

目的:分析分类数据,探索变量之间的关系。

R包:caFactoMineR

贝叶斯统计方法

目的:使用贝叶斯定理更新概率估计。

R包:rjagsStan

非参数和半参数方法

目的:不假设数据遵循特定的分布。

R包:npmgcv

匹配和倾向评分分析

目的:在观察研究中减少混杂。

R包:MatchIttwang

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值