描述性统计:
目的:描述和总结数据集的主要特征。
R包:base
, dplyr
, ggplot2
频率比较(Chi-square、Fisher's Exact Test):
目的:比较不同组别的频率或比例。
R包:stats
, epiR
t检验/ANOVA(方差分析):
目的:比较两个或多个组的均值。
R包:stats
, aov
, t.test
相关分析(Pearson、Spearman):
目的:评估两个连续变量间的关系强度。
R包:stats
, Hmisc
回归分析(线性、逻辑回归等):
目的:探究变量间的关系。
R包:lm
(线性回归)、glm
(广义线性模型)
生存分析(Kaplan-Meier、Cox Proportional Hazards Model):
目的:分析时间到事件数据。
R包:survival
, survminer
多层次模型(Mixed Effects Model):
目的:分析具有层次结构的数据。
R包:lme4
, nlme
时间序列分析:
目的:分析随时间变化的数据。
R包:forecast
, ts
空间分析:
目的:分析数据的地理或空间分布。
R包:sp
, sf
元分析:
目的:综合多项研究结果。
R包:meta
, metafor
贝叶斯方法:
目的:采用贝叶斯统计进行数据分析。
R包:rjags
, Stan
因果推断方法(Propensity Score Matching等):
目的:估计特定干预或暴露的因果效应。
R包:MatchIt
, causal
复杂采样和加权数据分析:
目的:分析非简单随机抽样得到的数据。
R包:survey
, weights
非参数方法(Mann-Whitney U test等):
目的:不依赖于数据分布假设的统计测试。
R包:wilcox.test
(Mann-Whitney U Test)
长格式数据和重复测量数据分析:
目的:分析在同一对象上重复测量的数据。
R包:nlme
, lme4
聚类分析和主成分分析:
目的:数据降维和群组识别。
R包:cluster
, factoextra
机器学习和数据挖掘:
目的:模式识别、分类和预测建模。
R包:caret
, randomForest
, e1071
网络分析:
目的:分析社会网络或流行病学网络。
R包:sna
, igraph
聚类分析:
目的:识别相似特征的个体或事件,形成群组。
R包:cluster
、factoextra
。
主成分分析(PCA)和因子分析:
目的:降维,减少分析所需的变量数量,同时保留最多的原始数据变异。
R包:prcomp
、factoextra
。
对应分析:
目的:分析分类数据,探索变量之间的关系。
R包:ca
、FactoMineR
。
贝叶斯统计方法:
目的:使用贝叶斯定理更新概率估计。
R包:rjags
、Stan
。
非参数和半参数方法:
目的:不假设数据遵循特定的分布。
R包:np
、mgcv
。
匹配和倾向评分分析:
目的:在观察研究中减少混杂。
R包:MatchIt
、twang
。