【Unity中的数学】—— 四元数

一、四元数的定义😎

四元数是一种高阶复数,是一个四维空间的概念,相对于复数的二维空间。它可以表示为 q = s + i x + j y + k z q = s + ix + jy + kz q=s+ix+jy+kz,其中 s s s x x x y y y z z z 都是实数,并且满足 i 2 = j 2 = k 2 = i j k = − 1 i^2 = j^2 = k^2 = ijk = -1 i2=j2=k2=ijk=1 i j = k ij = k ij=k j k = i jk = i jk=i k i = j ki = j ki=j j i = − k ji = -k ji=k k j = − i kj = -i kj=i i k = − j ik = -j ik=j 这些运算规则😜。

四元数的创造源于对复数以及矩阵的某些问题,在很多领域都有广泛的应用,比如计算机图形学、机器人学、航空航天等。它可以用来表示向量旋转或者坐标系转换,比欧拉角和旋转矩阵更具优势👏。例如,在计算机图形学中,四元数可以避免欧拉角表示旋转时出现的万向节死锁问题,并且计算更加紧凑高效,还能方便地进行球面插值。

二、万向节死锁😵

2.1 定义

万向节死锁(Gimbal Lock)是机械系统和三维空间旋转控制中的一种现象,主要发生在使用欧拉角描述三维旋转时😕。当一个旋转轴在一定条件下与另一个旋转轴重合时,系统失去了一个自由度,导致无法独立控制所有旋转方向,这种情况就称为万向节死锁。

2.2 原理

欧拉角是用来描述三维空间中刚体旋转的一种方法,它通过三个角度(通常为偏航角(yaw)、俯仰角(pitch)和滚转角(roll))来确定刚体的旋转状态😃。然而,欧拉角描述旋转时存在一个问题,就是当中间的旋转轴转动 90 度时,第一个旋转轴和第三个旋转轴会重合,系统就会损失一个自由度。

举个例子🤔,假如我们有一个飞机模型,按照 X − Y − Z X - Y - Z XYZ 的顺序进行旋转。当飞机绕 Y Y Y 轴旋转 90 度时, X X X 轴和 Z Z Z 轴的旋转效果就会相同,此时飞机就无法独立控制绕 X X X 轴的旋转了,这就是万向节死锁的表现。

2.3 避免方法

根据使用场景调整旋转顺序:用欧拉角描述旋转时无法完全避免死锁问题,但可以根据使用场景来减少死锁出现的概率。比如描述船在海上航行的姿态时,可以把中间的旋转轴定义为船的左右方向,因为船几乎很难在这个方向旋转 90 度(船头竖直朝上或朝下)🤗。
使用其他描述旋转的方式:使用四元数、旋转矩阵等其它方式描述旋转。四元数可以避免万向节死锁现象,并且只需要一个 4 维的四元数就可以执行绕任意过原点的向量的旋转,方便快捷,在某些实现下比旋转矩阵效率更高😎。

三、Unity中的四元数🎉

3.1 欧拉角与四元数互相转换

在 Unity 中,Transform 组件的 rotation 属性是一个四元数,但为了方便理解,我们通常会使用欧拉角来表示旋转。下面是欧拉角与四元数互相转换的方法👇:

3.1.1 欧拉角转四元数

// 获得挂在该脚本的对象的欧拉角
Vector3 euler = this.transform.eulerAngles;
Quaternion quater = Quaternion.Euler(euler);
Quaternion quater1 = Quaternion.Euler(0, 0, 0);

这里的 Quaternion.Euler 方法可以将欧拉角转换为四元数。它的实现原理是根据欧拉角的三个角度,通过一系列的三角函数计算得到四元数的四个分量😃。

3.1.2 四元数转欧拉角
print(quater.eulerAngles);

通过 eulerAngles 属性可以将四元数转换为欧拉角。需要注意的是,四元数到欧拉角的转换可能不是唯一的,因为一个旋转可以用多个不同的欧拉角表示😉。

3.2 对比物体间的旋转角度 Quaternion.Angle

Quaternion.Angle 方法用于计算两个四元数前方矢量之间的夹角度数,也就是对比物体之间的旋转角度😃。使用时需要声明一个公共 Transform 对象,示例代码如下:

public Transform target;

void Update()
{
    float angle = Quaternion.Angle(transform.rotation, target.rotation);
    Debug.Log("角度: " + angle);
}

在这个例子中,我们在 Update 函数中不断计算当前物体和目标物体之间的旋转角度,并将结果输出到控制台。这个方法在很多场景中都很有用,比如游戏中判断两个角色的朝向夹角😎。

3.3 直接绕轴旋转角度 Quaternion.AngleAxis

Quaternion.AngleAxis 方法用于创建一个绕指定轴旋转指定角度的四元数😜。它的函数原型如下:

public static Quaternion AngleAxis(float angle, Vector3 axis);

参数说明:

angle:旋转的角度,以度为单位。
axis:旋转的轴向,一个 Vector3 类型的对象。

返回值是一个 Quaternion 类型的对象,表示旋转的结果。下面是一些使用示例👇:

3.3.1 绕 Y 轴旋转游戏对象

public class RotateObject : MonoBehaviour
{
    public float rotationSpeed = 10f;

    private void Update()
    {
        // 根据旋转速度和 Y 轴创建旋转四元数
        Quaternion rotation = Quaternion.AngleAxis(rotationSpeed * Time.deltaTime, Vector3.up);

        // 将旋转应用到游戏对象的旋转属性上
        transform.rotation *= rotation;
    }
}

在这个示例中,我们创建了一个名为 RotateObject 的脚本,并将其绑定到一个游戏对象上。脚本中定义了一个 rotationSpeed 变量来控制旋转速度。在 Update 方法中,我们使用 Quaternion.AngleAxis 方法创建了一个绕 Y 轴旋转的旋转四元数 rotation,角度为 rotationSpeed 乘以 Time.deltaTime(用于平滑旋转)。然后,将该旋转应用到游戏对象的旋转属性上,使对象随时间不断绕 Y 轴旋转😎。

3.3.2 绕任意轴旋转游戏对象

public class RotateObject : MonoBehaviour
{
    public float rotationSpeed = 10f;
    public Vector3 rotationAxis = Vector3.up;

    private void Update()
    {
        // 根据旋转速度和轴向创建旋转四元数
        Quaternion rotation = Quaternion.AngleAxis(rotationSpeed * Time.deltaTime, rotationAxis);

        // 将旋转应用到游戏对象的旋转属性上
        transform.rotation *= rotation;
    }
}

这个示例与上面的类似,只是我们可以指定任意的旋转轴。通过修改 rotationAxis 变量,我们可以让游戏对象绕不同的轴进行旋转😃。

3.3.3 连续旋转游戏对象

public class RotateObject : MonoBehaviour
{
    public float rotationSpeed1 = 10f;
    public float rotationSpeed2 = 5f;

    private void Update()
    {
        // 根据旋转速度和 Y 轴创建旋转四元数
        Quaternion rotation1 = Quaternion.AngleAxis(rotationSpeed1 * Time.deltaTime, Vector3.up);

        // 根据旋转速度和 X 轴创建旋转四元数
        Quaternion rotation2 = Quaternion.AngleAxis(rotationSpeed2 * Time.deltaTime, Vector3.right);

        // 将两个旋转应用到游戏对象的旋转属性上
        transform.rotation *= rotation1 * rotation2;
    }
}

在这个示例中,我们创建了两个旋转四元数 rotation1 和 rotation2,分别绕 Y 轴和 X 轴进行旋转。然后,将这两个旋转应用到游戏对象的旋转属性上,使对象同时绕 Y 轴和 X 轴连续旋转😜。

3.4 其他静态方法

除了上面介绍的方法,Quaternion 类还有很多其他的静态方法,如 Dot、Inverse、Lerp、LookRotation、RotateToWards 和 Slerp 等。这些方法的具体使用可以参考官方手册😃。

四、四元数的计算🧮

4.1 加法

两个四元数的加法就是将“实部虚部”对应位置做元素求和😃。设两个四元数 q 1 = s 1 + i x 1 + j y 1 + k z 1 q_1 = s_1 + ix_1 + jy_1 + kz_1 q1=s1+ix1+jy1+kz1 q 2 = s 2 + i x 2 + j y 2 + k z 2 q_2 = s_2 + ix_2 + jy_2 + kz_2 q2=s2+ix2+jy2+kz2,则它们的和为: q 1 + q 2 = ( s 1 + s 2 ) + i ( x 1 + x 2 ) + j ( y 1 + y 2 ) + k ( z 1 + z 2 ) q_1 + q_2 = (s_1 + s_2) + i(x_1 + x_2) + j(y_1 + y_2) + k(z_1 + z_2) q1+q2=(s1+s2)+i(x1+x2)+j(y1+y2)+k(z1+z2)

四元数的加法满足交换律、结合律和分配律👏。

4.2 缩放

在系数缩放这一点上,四元数与复数是一致的😃。设四元数 q = s + i x + j y + k z q = s + ix + jy + kz q=s+ix+jy+kz,标量为 λ \lambda λ,则它们的乘积为: λ q = λ s + i λ x + j λ y + k λ z \lambda q = \lambda s + i\lambda x + j\lambda y + k\lambda z λq=λs+x+y+z

4.3 乘法

四元数的乘法是所有元素之前都要运算一遍😕。设两个四元数 q 1 = s 1 + i x 1 + j y 1 + k z 1 q_1 = s_1 + ix_1 + jy_1 + kz_1 q1=s1+ix1+jy1+kz1 q 2 = s 2 + i x 2 + j y 2 + k z 2 q_2 = s_2 + ix_2 + jy_2 + kz_2 q2=s2+ix2+jy2+kz2,则它们的乘积为: q 1 q 2 = ( s 1 s 2 − x 1 x 2 − y 1 y 2 − z 1 z 2 ) + i ( s 1 x 2 + s 2 x 1 + y 1 z 2 − y 2 z 1 ) + j ( s 1 y 2 + s 2 y 1 + x 2 z 1 − x 1 z 2 ) + k ( s 1 z 2 + s 2 z 1 + x 1 y 2 − x 2 y 1 ) q_1q_2 = (s_1s_2 - x_1x_2 - y_1y_2 - z_1z_2) + i(s_1x_2 + s_2x_1 + y_1z_2 - y_2z_1) + j(s_1y_2 + s_2y_1 + x_2z_1 - x_1z_2) + k(s_1z_2 + s_2z_1 + x_1y_2 - x_2y_1) q1q2=(s1s2x1x2y1y2z1z2)+i(s1x2+s2x1+y1z2y2z1)+j(s1y2+s2y1+x2z1x1z2)+k(s1z2+s2z1+x1y2x2y1)

需要注意的是,四元数与复数的最大的一点不同,复数乘法是有交换律的,而四元数没有😉。也就是说,一般情况下 q 1 q 2 ≠ q 2 q 1 q_1q_2 \neq q_2q_1 q1q2=q2q1

4.3.1 旋转 = 四元数 * 四元数

四元数相乘可以将旋转效果组合😎。例如, q u a t e r n i o n . e u l e r ( 0 , 0 , 10 ) ∗ q u a t e r n i o n . e u l e r ( 0 , 0 , 15 ) = = q u a t e r n i o n . e u l e r ( 0 , 0 , 25 ) quaternion.euler(0, 0, 10) * quaternion.euler(0, 0, 15) == quaternion.euler(0, 0, 25) quaternion.euler(0,0,10)quaternion.euler(0,0,15)==quaternion.euler(0,0,25),这就是四元数相乘的效果。在 Unity 中,我们可以通过四元数相乘来实现物体的复合旋转。

4.3.2 旋转向量 = 四元数 * 向量

四元数乘以向量表示将向量按照四元数表示的角度旋转😃。例如, v e c t o r 3 a = q u a t e r n i o n . e u l e r ( 0 , 0 , 10 ) ∗ n e w v e c t o r 3 ( 0 , 0 , 30 ) vector3 a = quaternion.euler(0, 0, 10) * new vector3(0, 0, 30) vector3a=quaternion.euler(0,0,10)newvector3(0,0,30) 表示将(0,0,30)这个向量绕 z 轴为定轴,顺时针旋转 10°。需要注意的是,四元数只能进行 * 运算,不能进行 + - 运算,这是由四元数复杂的内部原理决定的😜。

4.4 其他运算

四元数还有一些其他的运算,如求模、单位化、求共轭、求逆等😃。这些运算在四元数的应用中也非常重要,下面是它们的定义和公式:

4.4.1 求模

四元数 q = s + i x + j y + k z q = s + ix + jy + kz q=s+ix+jy+kz 的模定义为: ∣ q ∣ = s 2 + x 2 + y 2 + z 2 |q| = \sqrt{s^2 + x^2 + y^2 + z^2} q=s2+x2+y2+z2

4.4.2 单位化

单位化是将四元数的模变为 1,公式为: N o r m a l i z e ( q ) = q ∣ q ∣ Normalize(q) = \frac{q}{|q|} Normalize(q)=qq

4.4.3 求共轭

四元数 q = s + i x + j y + k z q = s + ix + jy + kz q=s+ix+jy+kz 的共轭定义为: q ∗ = s − i x − j y − k z q^* = s - ix - jy - kz q=sixjykz

4.4.4 求逆

四元数 q q q 的逆定义为: q − 1 = q ∗ ∣ q ∣ 2 q^{-1} = \frac{q^*}{|q|^2} q1=q2q

对于单位四元数,分母为 1, q − 1 = q ∗ q^{-1} = q^* q1=q

五、总结🥳

四元数在 Unity 中是一个非常重要的概念,它可以用来表示物体的旋转,避免欧拉角表示旋转时出现的万向节死锁问题😎。通过本文的介绍,我们了解了四元数的定义、万向节死锁的原理、Unity 中四元数的操作以及四元数的计算方法。希望这些内容对你有所帮助,让你在使用 Unity 进行开发时能够更加得心应手👏!

如果你想进一步了解四元数的相关知识,可以参考一些专业的数学书籍或者在线教程。同时,也可以通过实践来加深对四元数的理解,比如在 Unity 中创建一些简单的旋转效果,使用四元数来实现物体的旋转控制😃。

内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、query和getType的具体功能与应用场景。文档还深入讲解了Uri的结构和作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信和安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念和主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信和安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解和实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试和测试,确保对每个知识点都有深刻的理解。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导和学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新和维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名和密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问和操作其权限范围内的功能和数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露和非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批和院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生和审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期和请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课和请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导和学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任和院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
### Unity 中坐标系转换 在 Unity 中,不同类型的坐标系之间存在多种转换方式。为了实现这些转换,开发者通常会利用 `Transform` 组件所提供的属性和方法。 对于从屏幕空间到视口坐标的转换,可以使用如下代码片段[^1]: ```csharp Vector3 viewportPosition = Camera.main.ScreenToViewportPoint(Input.mousePosition); ``` 当涉及到物体坐标系与世界坐标系间的相互转化时,则依赖于 `Transform` 类中的几个重要方向向量以及变换矩阵。具体来说: - 物体坐标系转至世界坐标系可通过直接读取 `position`, `rotation` 或者组合成完整的变换矩阵来完成; - 反之亦然,在已知某个点的世界位置的情况下,想要获取其相对于特定物体的位置,可借助 `InverseTransformPoint()` 方法;同理还有用于处理旋转和平移的方法如 `InverseTransformDirection()`. 另外值得注意的是局部坐标系的概念——即子物体相对于父级而言所处的空间描述。这使得即使是在复杂层次结构下也能方便地执行各种几何计算而不必担心全局定位问题的发生[^4]. 最后关于更广泛的坐标体系间映射(比如惯性导航系统INS数据输入),则可能牵涉到更加复杂的数学运算过程,包括但不限于四元数插值、欧拉角解析等内容[^3]。 #### 示例:将本地坐标转化为世界坐标并打印出来 ```csharp using UnityEngine; public class CoordinateSystemConversion : MonoBehaviour { void Start(){ Vector3 localPos = new Vector3(0f, 2f, 5f); // 定义一个本地坐标下的三维矢量 Transform parentTrans = GameObject.Find("ParentObject").transform; // 获取作为参照物的游戏物件 Debug.Log(parentTrans.TransformPoint(localPos)); // 输出该点对应的世界坐标表示形式 } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值