单细胞、Visium、HD、Xenium表征结直肠癌肿瘤微环境中的免疫细胞群

作者,Evil Genius

高考日,都加油。

看看10X HD团队对平台的解读

知识背景

  • 结直肠癌(CRC)是世界上第二致命的癌症,然而对肿瘤微环境(TME)中基因表达的空间模式的更深入理解仍然是困难的。
  • Visium HD的单细胞分辨率使我们能够绘制不同的免疫细胞群,特别是巨噬细胞和T细胞,并评估肿瘤边界的差异基因表达,以探索这些免疫细胞群在TME中的潜在贡献。
  • 为了研究肿瘤与周围环境的相互作用,研究肿瘤周围50µm的外周区域。这种水平的TME表征只能在Visium HD分辨率下进行,这能够特异性地研究最接近肿瘤的细胞,这些细胞可能对肿瘤进展产生最大的影响
  • 利用Xenium技术在单细胞分辨率下,通过Visium HD数据绘制了我们在TME中观察到的巨噬细胞、肿瘤亚群和T细胞。Xenium证实了两种促肿瘤巨噬细胞亚群在不同生态位中的存在,并能够确定T细胞在TME中的位置。使用Xenium,还能够检测到克隆扩增的T细胞群及其所在的细胞微环境,揭示了具有第三个巨噬细胞亚群的抗肿瘤生态位

结果1、Visium HD规格和性能

Analysis of CRC and NAT samples using Visium HD

Visium HD的平台优势
1、能够在单细胞尺度上对整个转录组进行空间基因表达分析
2、2 μ m的正方形彼此直接相邻,特征之间没有间隙
3、Space Ranger (v3.0)pipeline输出2µm数据和8µm和16µm分辨率的数据分类
4、表明Visium HD检测分辨率的提高保持了Visium v2的高检测灵敏度

Visium HD Spatial Gene Expression slide architecture and performance

结果2、Visium HD在单细胞尺度上显示结直肠癌肿瘤的空间格局

  • HD的无监督聚类(8um)
  • 利用单细胞数据对HD数据进行反卷积
  • 预期的细胞类型可以仅根据Visium HD数据进行识别,而不需要使用单细胞数据进行反卷积
  • 反卷积Visium HD数据提供了在单细胞参考数据中观察到的细胞类型的高分辨率图谱,与组织形态一致。

Spatial mapping of CRC samples using Visium HD reveals high resolution, accurate transcript mapping

结果3、巨噬细胞在肿瘤边界富集

  • 重点放在肿瘤边界区域,以便能够了解这些肿瘤中的免疫细胞动力学和功能。利用Visium HD提供的更高分辨率,使用基于距离的分析来解析肿瘤边界的细胞组成,这是Visium v2分辨率无法完成的分析
     

Cellular composition of the tumor periphery in each CRC section

结果4、对巨噬细胞富集肿瘤区域的转录组学分析揭示了两个巨噬细胞亚群

  • 作为肿瘤周围最丰富的免疫细胞类型,将分析重点放在了富含巨噬细胞的肿瘤区域,以了解它们与TME的相互作用。首先,评估了这些细胞是否在肿瘤区域内呈现异质基因表达特征和空间位置。
  • 为了增加这些巨噬细胞亚群在TME中的空间背景,使用密度估计确定了高富集区域

     

Identification and localization of two macrophage subpopulations in the tumor microenvironment.

结果5、TME中T细胞的特征和空间定位

  • T细胞进入TME的募集和功能被认为与肿瘤niche中细胞的动力学有关,并且长期以来一直与有利的疾病结果相关。
  • 采用高分辨率空间技术,我们希望利用这一点来专门探索T细胞在肿瘤边界的定位和行为。

Spatial localization of T cells in the tumor microenvironment

结果6、Xenium原位分析证实了Visium HD的发现,并揭示了TME中克隆扩增T细胞的空间分布

  • 为了进一步研究TME内免疫细胞的空间分布并验证Visium HD数据的结果,使用Xenium Analyzer对样品进行了分析。
  • Xenium和Visium HD技术的互补优势

Xenium in situ confirms the existence and localization of macrophage subtypes and clonally expanded T cells in the tumor microenvironment.

讨论

  • 与反卷积方法相比,Visium HD数据的每个切片无监督聚类分析对组织切片中发现的主要细胞类型产生相似的细胞注释。虽然包含单细胞参考数据为跨多个样本的一致细胞注释策略和稀有细胞类型的识别提供了额外的好处,但使用Visium HD进行样本分析并不是必需的。

所有文章分析代码放在了下面,以供我们后续研究

链接:https://pan.baidu.com/s/1fiZwVRXQP8HqiMXs3IGahw?pwd=n529
提取码:n529

生活很好,有你更好

### 空间转录组学与单细胞测序的技术特点 #### 单细胞测序技术概述 单细胞测序是一种能够解析个体细胞之间差异的强大工具,其核心在于捕捉单个细胞内的分子特征。相比于传统的批量测序(bulk RNA-seq),它能更好地揭示细胞间的异质性[^3]。具体来说,单细胞转录组测序(scRNA-seq)通过分离并分析单一细胞的mRNA表达谱来实现这一点。 #### 空间转录组学的核心价值 空间转录组学则进一步扩展了单细胞测序的能力,不仅提供了基因表达的信息,还保留了这些表达模式在组织中的物理位置。这种能力对于理解复杂的组织构及其功能至关重要[^4]。例如,在肿瘤微环境中,特定类型的免疫细胞可能聚集于某些区域,而空间转录组学可以精确定位这些分布特性[^1]。 --- ### 常见技术平台比较 | 技术名称 | 特点 | |------------------|------------------------------------------------------------------------------------------| | **10x Genomics** | 提供高通量解决方案,支持大规模实验设计;适用于多种样品类型 | | | - scRNA-seq:捕获大量单细胞的数据 | | | - Visium Spatial Gene Expression:专注于整个切片上的空间分辨率 | 上述两种方案均被广泛应用,并且随着硬件改进和技术优化不断进步[^5]。 --- ### 数据处理与生物信息学分析流程 针对这两种数据集的计算框架通常分为以下几个方面: 1. **质量控制 (QC)** 初步筛选去除低质量读取片段以及背景噪音干扰项。 2. **标准化 Normalization** 使用log transformation或其他统计模型调整原始计数值以便后续建模操作更加稳健可靠. 3. **降维 Dimensionality Reduction & Clustering** 应用PCA, t-SNE 或 UMAP 方法降低维度后聚类发现潜在的新颖亚型体. 4. **标记基因鉴定 Marker Identification** 找到区分各个cluster的关键因素即所谓markers genes用于解释生物学意义. 5. **可视化 Visualization** 果呈现形式多样包括散点图热力图等等直观展示重要趋势变化规律. 6. **高级分析 Advanced Analysis** 如轨迹推断(Trajectory Inference), 细胞通讯(Cell Communication)预测等深入挖掘隐藏机制.[^2] 以下是Python代码示例演示如何利用Scanpy库完成部分基础步骤: ```python import scanpy as sc adata = sc.read_10x_h5('filtered_gene_bc_matrices.h5') # 加载数据 sc.pp.filter_cells(adata, min_genes=200) # 过滤掉不合格单元格 sc.pp.normalize_total(adata, target_sum=1e4) # 总数归一化至每万条reads sc.pp.log1p(adata) # 取自然对数变换改善动态范围表现 sc.tl.pca(adata,n_comps=50) # PCA分解提取主要成分向量表示原矩阵近似情况 sc.pl.pca_variance_ratio(adata) # 展现各主轴贡献度比例曲线图表辅助判断最佳选取数目 ``` --- ### 实际案例分享 一篇发表的研究展示了合多组学手段探索心脏病理过程的成功范例。其中提到运用snRNA-seq加scATAC-seq再加上Visium Space Transcriptome三重验证最终锁定了调控心肌纤维分化的重要因子RUNX1作为治疗靶点之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值