作者,Evil Genius
目前我们的课程已经上了20节课了,预计还有3周,我们本年度的课程就要全部结束了,大家都是硕士博士,并且身处国家重点单位、高校,多学点空间分析技能,自然对数据的分析很有帮助,并且输出一些高质量的分析文章,对这个社会、科研等发展,都有很正向的作用。
不知不觉都已经走了很多年了,其实我自己也没什么拿得出手的成果,唯一让我觉得自己走过这段过程的印记,大概就是经常写关于单细胞空间的“日记”吧。
感觉课程上完,应该可以突破200万字了。虽然比起大佬们很寒酸啊,没有什么好的文章发表,也“水”过低分的文章,基本上不了台面。
至于空间基因梯度,主要是有如下的运用。
对伤口损伤的小鼠大脑皮层(损伤后3天)进行空间转录组梯度分析中,空间梯度分析从损伤核心(深红色点)向周边(浅粉色)的区域内进行分析,其中还这涉及到基因调控的一些内容。
我们需要实现的目标
完整的脚本如下
#! usr/R
###zhaoyunfei
###20240801
library(Seurat)
library(Matrix)
library(RcppML)
library(ggplot2)
library(dplyr)
library(LSGI)
library(msigdbr)
library(hypeR)
library(magick)
sample = 'liver2'
img <- Read10X_Image(image.dir = "/home/samples/DB/Spatial/data/ST/ST-liver2/",image.name = "tissue_lowres_image.png", filter.matrix = TRUE)
data <- Load10X_Spatial(data.dir = "/home/samples/DB/Spatial/data/ST/ST-liver2/",filename = "filtered_feature_bc_matrix.h5",assay = "Spatial", slice = sample, filter.matrix = TRUE, to.upper = FALSE,image = img)
data <- NormalizeData(data)
###NMF
scan.nmf.mse <- function(obj, ranks = seq(1, 30, 2), tol = 1e-04) {
# users can customize the scan by changing 'ranks'
dat <- obj@assays$Spatial@data
errors <- c()
ranks <- seq(1, 30, 2)
for (i in ranks) {
# cat('rank: ', i, '\n')
mod <- RcppML::nmf(dat, i, tol = 1e-04, verbose = F)
mse_i <- mse(dat, mod$w, mod$d, mod$h)
errors <- c(errors, mse_i)
}
results <- data.frame(rank = ranks, MSE = errors)
return(results)
}
sr.nmf <- function(obj, k = 10, tol = 1e-06, assay = "Spatial") {
dat <- obj@assays$Spatial@data
nmf_model <- RcppML::nmf(dat, k = k, tol = tol, verbose = F)
embeddings <- t(nmf_model$h)
rownames(embeddings) <- colnames(obj)
colnames(embeddings) <- paste0("nmf_", 1:k)
loadings <- nmf_model$w
rownames(loadings) <- rownames(obj)
obj@reductions$nmf <- CreateDimReducObject(embeddings = embeddings,
loadings = loadings, key = "nmf_", assay = assay)
return(obj)
}
scan.nmf.res <- scan.nmf.mse(obj = data)
res = 300
png('NMF.k.png',width = 7 * res ,height = 8 * res, res = 300 ,type = c("cairo"))
ggplot(scan.nmf.res, aes(x = rank, y = MSE)) + geom_point(size = 0.7) + geom_smooth(method = "loess", span = 0.2, color = "black",linewidth = 1, se = F) + labs(x = "NMF rank", y = "MSE") + theme_classic() + scale_y_continuous(expand = c(0.01, 0)) + theme(aspect.ratio = 1)
dev.off()
data <- sr.nmf(obj = data, k = 10, tol = 1e-05)
###Prepare input data for LSGI
spatial_coords <- data@images[[sample]]@coordinates[, c(4, 5)]
colnames(spatial_coords) <- c("X", "Y")
embeddings <- data@reductions$nmf@cell.embeddings
# neighborhood
lsgi.res <- local.traj.preprocessing(spatial_coords = spatial_coords, n.grids.scale = 2, embeddings = embeddings, n.cells.per.meta = 25)
####注释
get.nmf.info <- function(obj, top.n = 50) {
feature.loadings <- as.data.frame(obj@reductions$nmf@feature.loadings)
top.gene.list <- list()
for (i in 1:ncol(feature.loadings)) {
o <- order(feature.loadings[, i], decreasing = T)[1:top.n]
features <- rownames(feature.loadings)[o]
top.gene.list[[colnames(feature.loadings)[i]]] <- features
}
nmf.info <- list(feature.loadings = feature.loadings, top.genes = top.gene.list)
return(nmf.info)
}
nmf_info <- get.nmf.info(data)
mdb_h <- msigdbr(species = "Homo sapiens", category = "H")
gene.set.list <- list()
for (gene.set.name in unique(mdb_h$gs_name)) {
gene.set.list[[gene.set.name]] <- mdb_h[mdb_h$gs_name %in%
gene.set.name, ]$gene_symbol
}
# run hypeR test
mhyp <- hypeR(signature = nmf_info$top.genes, genesets = gene.set.list,
test = "hypergeometric", background = rownames(nmf_info[["feature.loadings"]]))
hyper.data <- mhyp$data
hyper.res.list <- list()
for (nmf.name in names(hyper.data)) {
res <- as.data.frame(hyper.data[[nmf.name]]$data)
hyper.res.list[[nmf.name]] <- res
}
png('NMF.enrichment.png',width = 7 * res ,height = 8 * res, res = 300 ,type = c("cairo"))
ggplot(hyper.res.list[[1]][1:5, ], aes(x = reorder(label, -log10(fdr)),
y = overlap/signature, fill = -log10(fdr))) + geom_bar(stat = "identity",
show.legend = T) + xlab("Gene Set") + ylab("Gene Ratio") +
viridis::scale_fill_viridis() + theme_classic() + coord_flip() +
theme(axis.text.x = element_text(color = "black", size = 12,
angle = 45, hjust = 1), axis.text.y = element_text(color = "black",
size = 8, angle = 0), panel.border = element_rect(colour = "black",
fill = NA, size = 1))
dev.off()
plot.overlay.factor <- function(object, info, sel.factors = NULL,
r_squared_thresh = 0.6, minimum.fctr = 20) {
scf <- object@images[[sample]]@scale.factors[["lowres"]]
object <- subset(object, cells = rownames(info$spatial_coords))
print(identical(rownames(object@meta.data), rownames(info$spatial_coords)))
object <- rotateSeuratImage(object, rotation = "L90")
object@meta.data <- cbind(object@meta.data, info$embeddings)
lin.res.df <- get.ind.rsqrs(info)
lin.res.df <- na.omit(lin.res.df)
lin.res.df <- lin.res.df[lin.res.df$rsquared > r_squared_thresh,
]
if (!is.null(sel.factors)) {
lin.res.df <- lin.res.df[lin.res.df$fctr %in% sel.factors,
]
}
lin.res.df <- lin.res.df %>%
group_by(fctr) %>%
filter(n() >= minimum.fctr) %>%
ungroup()
spatial_coords <- info$spatial_coords
spatial_coords$X <- spatial_coords$X * scf
spatial_coords$Y <- spatial_coords$Y * scf
lin.res.df$Xend <- lin.res.df$X + lin.res.df$vx.u
lin.res.df$Yend <- lin.res.df$Y + lin.res.df$vy.u
lin.res.df$X <- lin.res.df$X * scf
lin.res.df$Xend <- lin.res.df$Xend * scf
lin.res.df$Y <- lin.res.df$Y * scf
lin.res.df$Yend <- lin.res.df$Yend * scf
p <- SpatialFeaturePlot(object, features = NULL, alpha = c(0)) +
NoLegend() + geom_segment(data = as.data.frame(lin.res.df),
aes(x = X, y = Y, xend = Xend, yend = Yend, color = fctr,
fill = NULL), linewidth = 0.4, arrow = arrow(length = unit(0.1,
"cm"))) + scale_color_brewer(palette = "Paired") +
# scale_fill_gradient(low='lightgrey', high='navy')
# +
theme_classic() + theme(axis.text.x = element_text(face = "bold",
color = "black", size = 12, angle = 0, hjust = 1), axis.text.y = element_text(face = "bold",
color = "black", size = 12, angle = 0))
return(p)
}
# Adapted from this link:
# https://github.com/satijalab/seurat/issues/2702#issuecomment-1626010475
rotateSeuratImage <- function(seuratVisumObject, slide = sample,
rotation = "Vf") {
if (!(rotation %in% c("180", "Hf", "Vf", "L90", "R90"))) {
cat("Rotation should be either 180, L90, R90, Hf or Vf\n")
return(NULL)
} else {
seurat.visium <- seuratVisumObject
ori.array <- (seurat.visium@images)[[slide]]@image
img.dim <- dim(ori.array)[1:2]/(seurat.visium@images)[[slide]]@scale.factors$lowres
new.mx <- c()
# transform the image array
for (rgb_idx in 1:3) {
each.mx <- ori.array[, , rgb_idx]
each.mx.trans <- rotimat(each.mx, rotation)
new.mx <- c(new.mx, list(each.mx.trans))
}
# construct new rgb image array
new.X.dim <- dim(each.mx.trans)[1]
new.Y.dim <- dim(each.mx.trans)[2]
new.array <- array(c(new.mx[[1]], new.mx[[2]], new.mx[[3]]),
dim = c(new.X.dim, new.Y.dim, 3))
# swap old image with new image
seurat.visium@images[[slide]]@image <- new.array
## step4: change the tissue pixel-spot index
img.index <- (seurat.visium@images)[[slide]]@coordinates
# swap index
if (rotation == "Hf") {
seurat.visium@images[[slide]]@coordinates$imagecol <- img.dim[2] -
img.index$imagecol
}
if (rotation == "Vf") {
seurat.visium@images[[slide]]@coordinates$imagerow <- img.dim[1] -
img.index$imagerow
}
if (rotation == "180") {
seurat.visium@images[[slide]]@coordinates$imagerow <- img.dim[1] -
img.index$imagerow
seurat.visium@images[[slide]]@coordinates$imagecol <- img.dim[2] -
img.index$imagecol
}
if (rotation == "L90") {
seurat.visium@images[[slide]]@coordinates$imagerow <- img.dim[2] -
img.index$imagecol
seurat.visium@images[[slide]]@coordinates$imagecol <- img.index$imagerow
}
if (rotation == "R90") {
seurat.visium@images[[slide]]@coordinates$imagerow <- img.index$imagecol
seurat.visium@images[[slide]]@coordinates$imagecol <- img.dim[1] -
img.index$imagerow
}
return(seurat.visium)
}
}
rotimat <- function(foo, rotation) {
if (!is.matrix(foo)) {
cat("Input is not a matrix")
return(foo)
}
if (!(rotation %in% c("180", "Hf", "Vf", "R90", "L90"))) {
cat("Rotation should be either L90, R90, 180, Hf or Vf\n")
return(foo)
}
if (rotation == "180") {
foo <- foo %>%
.[, dim(.)[2]:1] %>%
.[dim(.)[1]:1, ]
}
if (rotation == "Hf") {
foo <- foo %>%
.[, dim(.)[2]:1]
}
if (rotation == "Vf") {
foo <- foo %>%
.[dim(.)[1]:1, ]
}
if (rotation == "L90") {
foo = t(foo)
foo <- foo %>%
.[dim(.)[1]:1, ]
}
if (rotation == "R90") {
foo = t(foo)
foo <- foo %>%
.[, dim(.)[2]:1]
}
return(foo)
}
png('Spatial.gredient.png',width = 7 * res ,height = 8 * res, res = 300 ,type = c("cairo"))
plot.overlay.factor(object = data, info = lsgi.res, sel.factors = NULL)
dev.off()
生活很好,有你更好