LSTM-RF混合预测模型详细分析

LSTM-RF混合预测模型详细分析

1. 整体架构

这是一个混合预测模型,主要包含以下核心组件:

  • LSTM神经网络:处理时序特征
  • 随机森林集成:处理静态特征
  • 布谷鸟搜索算法:优化随机森林参数
  • 动态权重机制:平衡两个模型的预测结果

2. 关键类和功能

2.1 Config类

  • 配置所有模型参数和超参数:包括数据参数、LSTM参数、随机森林参数、训练参数等
  • 关键参数:
    • PIXELS_PER_TIMESTEP = 225(每个时间步的像素点数)
    • INPUT_TIMESTEPS = 4(使用前4个时间步的数据)
    • LSTM_HIDDEN_SIZE = 128(LSTM隐藏层神经元数)
    • RF_N_ESTIMATORS = 200(随机森林中决策树数量)

2.2 LSTMModel类

  • 继承自nn.Module
  • 架构:
    输入层 -> LSTM层 -> Dropout层 -> 全连接层 -> 输出层
    
  • 核心运算:
    1. LSTM层处理序列数据:(batch_size, sequence_length, input_size)
    2. Dropout防止过拟合
    3. 全连接层映射到预测值

2.3 CuckooSearch类(布谷鸟搜索算法)

  • 用于优化随机森林参数
  • 关键步骤:
    1. 生成初始解(参数组合)
    2. Lévy飞行生成新解
    3. 通过适应度函数评估解的质量
    4. 更新最优解

2.4 HybridPredictor类(核心类)

初始化阶段:
- 创建LSTM模型
- 创建随机森林集成(3个模型)
- 设置优化器(Adam)和学习率调度器
- 初始化权重(LSTM和RF各0.5
训练流程:
  1. LSTM训练:

    • 批量训练
    • 使用MSE损失函数
    • 应用L1正则化
    • 梯度裁剪防止梯度爆炸
    • 动态学习率调整
  2. 随机森林训练:

    • 使用布谷鸟搜索优化参数
    • 训练3个独立的随机森林模型
    • 计算特征重要性
  3. 动态权重计算:

    • 基于各模型在验证集上的MSE
    • 为每个特征维度计算单独的权重
    • 更新整体模型权重

3. 数据处理流程

3.1 预处理:

  1. 加载CSV数据
  2. 提取坐标和特征
  3. 使用MinMaxScaler标准化特征
  4. 重组数据为3D张量:(pixels, timesteps, features)

3.2 数据分割:

原始数据 -> 训练集(80%) + 验证集(20%)

3.3 预测流程:

  1. LSTM预测时序特征
  2. 随机森林集成预测
  3. 使用动态权重组合预测结果
  4. 反归一化得到最终预测值

4. 性能评估

使用两个指标评估模型性能:

  1. RMSE(均方根误差):衡量预测值与真实值的偏差
  2. 相关系数:衡量预测值与真实值的相关性

5. 计算复杂度分析

LSTM部分:

  • 时间复杂度:O(sequence_length * hidden_size^2)
  • 空间复杂度:O(batch_size * sequence_length * hidden_size)

随机森林部分:

  • 训练时间复杂度:O(n_trees * n_samples * log(n_samples))
  • 预测时间复杂度:O(n_trees * log(n_samples))

布谷鸟搜索:

  • 时间复杂度:O(max_generations * n_nests)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值