从零搭建Pytorch模型教程(三)搭建Transformer网络

前言

本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍。

在讲如何搭建之前,先回顾一下Transformer在计算机视觉中的结构是怎样的。这里以最典型的ViT为例。

如图所示,对于一张图像,先将其分割成NxN个patches,把patches进行Flatten,再通过一个全连接层映射成tokens,对每一个tokens加入位置编码(position embedding),会随机初始化一个tokens,concate到通过图像生成的tokens后,再经过transformer的Encoder模块,经过多层Encoder后,取出最后的tokens(即随机初始化的tokens),再通过全连接层作为分类网络进行分类。

下面我们就根据这个流程来一步一步介绍如何搭建一个Transformer模型。、

分块


目前有两种方式实现分块,一种是直接分割,一种是通过卷积核和步长都为patch大小的卷积来分割。

直接分割

直接分割即把图像直接分成多块。在代码实现上需要使用einops这个库,完成的操作是将(B,C,H,W)的shape调整为(B,(H/P *W/P),P*P*C)。

from einops import rearrange, repeat
from einops.layers.torch import Rearrange

self.to_patch_embedding = nn.Sequential(
           Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
           nn.Linear(patch_dim, dim),
      )

这里简单介绍一下Rearrange。

Rearrange用于对张量的维度进行重新变换排序,可用于替换pytorch中的reshape,view,transpose和permute等操作。举几个例子

#假设images的shape为[32,200,400,3]
#实现view和reshape的功能
Rearrange(images,'b h w c -> (b h) w c')#shape变为(32*200, 400, 3)
#实现permute的功能
Rearrange(images, 'b h w c -> b c h w')#shape变为(32, 3, 200, 400)
#实现这几个都很难实现的功能
Rearrange(images, 'b h w c -> (b c w) h')#shape变为(32*3*400, 200)

从这几个例子看可以看出,Rearrange非常简单好用,这里的b, c, h, w都可以理解为表示符号,用来表示操作变化。通过这几个例子似乎也能理解下面这行代码是如何将图像分割的。

Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width)

这里需要解释的是,一个括号内的两个变量相乘表示的是该维度的长度,因此不要把"h"和"w"理解成图像的宽和高。这里实际上h = H/p1, w = W/p2,代表的是高度上有几块,宽度上有几块。h和w都不需要赋值,代码会自动根据这个表达式计算,b和c也会自动对应到输入数据的B和C。

后面的"b (h w) (p1 p2 c)"表示了图像分块后的shape: (B,(H/P *W/P),P*P*C)

这种方式在分块后还需要通过一层全连接层将分块的向量映射为tokens。

在ViT中使用的就是这种直接分块方式。

卷积分割

卷积分割比较容易理解,使用卷积核和步长都为patch大小的卷积对图像卷积一次就可以了。

self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C

在swin transformer中即使用的是这种卷积分块方式。在swin transformer中卷积后没有再加全连接层。

Position Embedding


Position Embedding可以分为absolute position embedding和relative position embedding。

在学习最初的transformer时,可能会注意到用的是正余弦编码的方式,但这只适用于语音、文字等1维数据,图像是高度结构化的数据,用正余弦不合适

在ViT和swin transformer中都是直接随机初始化一组与tokens同shape的可学习参数,与tokens相加,即完成了absolute position embedding。

在ViT中实现方式:

self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
x += self.pos_embedding[:, :(n + 1)]
#之所以是n+1,是因为ViT中选择随机初始化一个class token,与分块得到的tokens拼接。所以patches的数量为num_patches+1。

在swin transformer中的实现方式:

from timm.models.layers import trunc_normal_
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)

在TimeSformer中的实现方式:

self.pos_emb = torch.nn.Embedding(num_positions + 1, dim)

以上就是简单的使用方法,这种方法属于absolute position embedding。

Encoder


Encoder由Multi-head Self-attention和FeedForward组成。

Multi-head Self-attention

Multi-head Self-attention主要是先把tokens分成q、k、v,再计算q和k的点积,经过softmax后获得加权值,给v加权,再经过全连接层。

用公式表示如下:
在这里插入图片描述

所谓Multi-head是指把q、k、v再dim维度上分成head份,公式里的dk为每个head的维度。

具体代码如下:

class Attention(nn.Module):
   def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
       super().__init__()
       inner_dim = dim_head *  heads
       project_out = not (heads == 1 and dim_head == dim)

       self.heads = heads
       self.scale = dim_head ** -0.5
       self.attend = nn.Softmax(dim = -1)
       self.dropout = nn.Dropout(dropout)

       self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
       self.to_out = nn.Sequential(
           nn.Linear(inner_dim, dim),
           nn.Dropout(dropout)
      ) if project_out else nn.Identity()

   def forward(self, x):
       qkv = self.to_qkv(x).chunk(3, dim = -1)
       q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
       dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
       attn = self.attend(dots)
       attn = self.dropout(attn)

       out = torch.matmul(attn, v)
       out = rearrange(out, 'b h n d -> b n (h d)')
       return self.to_out(out)

这里没有太多可以解释的地方,介绍一下q、k、v的来源,由于这是self-attention,因此q=k=v(即tokens),若是普通attention,则k= v,而q是其它的东西,例如可以是另一个尺度的tokens,或视频领域中的其它帧的tokens。

FeedForward

这里不用多介绍。

class FeedForward(nn.Module):
   def __init__(self, dim, hidden_dim, dropout = 0.):
       super().__init__()
       self.net = nn.Sequential(
           nn.Linear(dim, hidden_dim),
           nn.GELU(),
           nn.Dropout(dropout),
           nn.Linear(hidden_dim, dim),
           nn.Dropout(dropout)
      )
   def forward(self, x):
       return self.net(x)

把上面两者组合起来就是Encoder了。

class Transformer(nn.Module):
   def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
       super().__init__()
       self.layers = nn.ModuleList([])
       for _ in range(depth):
           self.layers.append(nn.ModuleList([
               PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
               PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
          ]))
   def forward(self, x):
       for attn, ff in self.layers:
           x = attn(x) + x
           x = ff(x) + x
       return x

depth指的是Encoder的数量。PreNorm指的是层归一化。

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

分类方法


数据通过Encoder后获得最后的预测向量的方法有两种典型。在ViT中是随机初始化一个cls_token,concate到分块后的token后,经过Encoder后取出cls_token,最后将cls_token通过全连接层映射到最后的预测维度。

#生成cls_token部分
from einops import repeat
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))

cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
################################
#分类部分
self.mlp_head = nn.Sequential(
           nn.LayerNorm(dim),
           nn.Linear(dim, num_classes)
      )
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

x = self.to_latent(x)
return self.mlp_head(x)

在swin transformer中,没有选择cls_token。而是直接在经过Encoder后将所有数据取了个平均池化,再通过全连接层。

self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

x = self.avgpool(x.transpose(1, 2))  # B C 1
x = torch.flatten(x, 1)
x = self.head(x)

组合以上这些就成了一个完整的模型

class ViT(nn.Module):
   def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
       super().__init__()
       image_height, image_width = pair(image_size)
       patch_height, patch_width = pair(patch_size)

       num_patches = (image_height // patch_height) * (image_width // patch_width)
       patch_dim = channels * patch_height * patch_width
       assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'

       self.to_patch_embedding = nn.Sequential(
           Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
           nn.Linear(patch_dim, dim),
      )

       self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
       self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
       self.dropout = nn.Dropout(emb_dropout)
       self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)

       self.pool = pool
       self.to_latent = nn.Identity()
       self.mlp_head = nn.Sequential(
           nn.LayerNorm(dim),
           nn.Linear(dim, num_classes)
      )

   def forward(self, img):
       x = self.to_patch_embedding(img)
       b, n, _ = x.shape

       cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
       x = torch.cat((cls_tokens, x), dim=1)
       x += self.pos_embedding[:, :(n + 1)]
       x = self.dropout(x)
       x = self.transformer(x)
       x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

       x = self.to_latent(x)
       return self.mlp_head(x)

数据的变换


以上的代码都是比较简单的,整体上最麻烦的地方在于理解数据的变换。

首先输入的数据为(B, C, H, W),在经过分块后,变成了(B, n, d)。

在CNN模型中,很好理解(H,W)就是feature map,C是指feature map的数量,那这里的n,d哪个是通道,哪个是图像特征?

回顾一下分块的部分

Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width)

根据这个可以知道n为分块的数量,d为每一块的内容。因此,这里的n相当于CNN模型中的C,而d相当于features。

一般情况下,在Encoder中,我们都是以(B, n, d)的形式。

在swin transformer中这种以卷积的形式分块,获得的形式为(B, C, L),然后做了一个transpose得到(B, L, C),这与ViT通过直接分块方式获得的形式实际上完全一样,在Swin transformer中的L即为ViT中的n,而C为ViT中的d。

因此,要注意的是在Multi-head self-attention中,数据的形式是(Batchsize, Channel, Features),分成多个head的是Features。

前面提到,在ViT中会concate一个随机生成的cls_token,该cls_token的维度即为(B, 1, d)。可以理解为通道数多了个1。

以上就是Transformer的模型搭建细节了,整体上比较简单,大家看完这篇文章后可以找几篇Transformer的代码来理解理解。如ViT, swin transformer, TimeSformer等。

ViT:https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit.py
swin: https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
TimeSformer:https://github.com/lucidrains/TimeSformer-pytorch/blob/main/timesformer_pytorch/timesformer_pytorch.py

下一篇我们将介绍如何写train函数,以及包括设置优化方式,设置学习率,不同层设置不同学习率,解析参数等。

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值