概率论学习笔记01——随机事件与概率

1. 事件的运算

  • 两个事件的差: A − B = A ∩ B ‾ A-B=A \cap \overline B AB=AB

  • “并”、"交"的结合律、分配律
    对偶率:
    A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline A\cap \overline B AB=AB
    A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cap B}=\overline A\cup \overline B AB=AB

  • 概率的加法公式(1):如果事件A与事件B互不相容,则
    P ( A ∪ B ) = P ( A ) + P ( B ) P(A\cup B)=P(A)+P(B) P(AB)=P(A)+P(B)

  • 概率的加法公式(2):设 A 1 , A 2 , . . . A_1,A_2,... A1,A2,...是一系列事件,两两不相容(即对一切 i ≠ j , A i i\neq j,A_i i=j,Ai A j A_j Aj互不相容,则
    P ( ∪ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\mathop{\cup}\limits_{i=1}^\infty A_i)=\sum\limits_{i=1}^\infty P(A_i) P(i=1Ai)=i=1P(Ai)

2. 古典概型

  • 基本事件:条件S下只有n个可能的结果: A 1 , . . . , A n A_1,...,A_n A1,...,An,把每个结果看成一个事件,在S的每次实现下发生而且只发生上述事件之一,并且它们出现的机会相等,那么称 A 1 , . . . , A n A_1,...,A_n A1,...,An为条件S下的基本事件。

  • 等概完备事件组 A 1 , . . . , A n A_1,...,A_n A1,...,An的性质:
    (1) ∪ i = 1 n A i \mathop{\cup}\limits_{i=1}^n A_i i=1nAi是必然事件(完全性);
    (2)对任何 i ≠ j i\neq j i=j A i A_i Ai A j A_j Aj是互不相容的(不相容性);
    (3)对任何 i ≠ j i\neq j i=j A i A_i Ai发生的机会与 A j A_j Aj发生的机会相等(等概性)。

  • 栗子:从盛有号码为 1 , . . . , N 1,...,N 1,...,N的球的箱子里有放回的抽取了n次(每次取一个球,记下号码后再放回箱子里),求:
    (1)这些号码按严格增大的次序出现的概率; C N n N n \frac{C_N^n}{N^n} NnCNn
    (2)这些号码按不减小的次序出现的概率。 C N + n − 1 n N n \frac{C_{N+n-1}^n}{N^n} NnCN+n1n

  • Jordan公式:设 A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n\ge2) A1,...,An(n2)是n个事件,则
    P ( ∪ i = 1 n A i ) = ∑ k = 1 n ( − 1 ) k − 1 S k , P(\mathop{\cup}\limits_{i=1}^n A_i)=\sum\limits_{k=1}^n (-1)^{k-1}S_k, P(i=1nAi)=k=1n(1)k1Sk,
    其中 S k = ∑ i 1 < . . . < i k P ( A i 1 . . . A i k ) ( k = 1 , . . . , n ) . S_k=\sum\limits_{i_1<...<i_k}P(A_{i_1}...A_{i_k})\hspace{2em}(k=1,...,n). Sk=i1<...<ikP(Ai1...Aik)(k=1,...,n).

  • 栗子:某班N个学生依一定的顺序参加口试。设有 n ( 1 < n ≤ N ) n(1<n\le N) n(1<nN)个考签,被抽到的考签用后随即放回,求在考试结束时至少有一个考签没有被抽到的概率。 ∑ k = 1 n ( − 1 ) k − 1 C n k ( n − k n ) N \sum\limits_{k=1}^n(-1)^{k-1}C_n^k(\frac{n-k}n)^N k=1n(1)k1Cnk(nnk)N

  • 栗子:某人写了 n n n封信,又写了 n ( n ≥ 2 ) n(n\ge2) n(n2)个信封,然后把这些信任意地装入信封(一个信封装一封信),问:至少有一封信装对了的概率是多少?
    ∣ 1 − e − 1 − P ( A ) ∣ ≤ 1 ( n + 1 ) ! |1-e^{-1}-P(A)|\le \frac1{(n+1)!} ∣1e1P(A)(n+1)!1,当 n ≥ 4 n\ge4 n4时, P ( A ) ≈ 1 − e − 1 ≈ 0.63 P(A)\approx1-e^{-1}\approx0.63 P(A)1e10.63

3. 条件概率

  • 乘法公式: P ( A B ) = P ( B ) P ( A ∣ B ) P(AB)=P(B)P(A|B) P(AB)=P(B)P(AB)

  • 一般乘法公式:设 A 1 , . . . A n A_1,...A_n A1,...An n ( n ≥ 2 ) n(n\ge2) n(n2)个事件,满足 P ( A 1 . . . A n − 1 ≠ 0 ) P(A_1...A_{n-1}\neq0) P(A1...An1=0),则
    P ( A 1 . . . A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) . . . P ( A n ∣ A 1 . . . A n − 1 ) . P(A_1...A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1}). P(A1...An)=P(A1)P(A2A1)P(A3A1A2)...P(AnA1...An1).

  • 栗子:某剧院的售票处窗口卖票,每张票价5元。设有 m + n ( m ≥ n ≥ 1 ) m+n(m\ge n\ge1) m+n(mn1)个人排队买票,其中m个人持有5元,n个人持有10元。若售票开始时售票处未准备零钱,问:买票过程中没有一个人需要等候找钱的概率是多少? m + 1 − n m + 1 \frac{m+1-n}{m+1} m+1m+1n

  • A与B相互独立:设A和B都是条件S下的随机事件。若满足 P ( A B ) = P ( A ) P ( B ) . P(AB)=P(A)P(B). P(AB)=P(A)P(B).

  • A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n\ge2) A1,...,An(n2)相互独立:如果对任何整数 k ( 2 ≤ k ≤ n ) k(2\le k\le n) k(2kn),有 P ( A i 1 . . . A i k ) = P ( A i 1 ) . . . P ( A i k ) P(A_{i_1}...A_{i_k})=P(A_{i_1})...P(A_{i_k}) P(Ai1...Aik)=P(Ai1)...P(Aik),其中 i 1 , . . . , i k i_1,...,i_k i1,...,ik是满足条件 1 ≤ i 1 < . . . < j k ≤ n 1\le i_1<...<j_k\le n 1i1<...<jkn的任何k个整数.

  • A 1 , . . . , A n ( n ≥ 2 ) A_1,...,A_n(n\ge2) A1,...,An(n2)是n个事件,满足 P ( A 1 . . . A n ) ≠ 0 P(A_1...A_n)\neq0 P(A1...An)=0,则 A 1 , . . . , A n A_1,...,A_n A1,...,An相互独立的充要条件是:若 { i 0 , i 1 , . . . , i m } ( m ≥ 1 ) \{i_0,i_1,...,i_m\}(m\ge1) {i0,i1,...,im}(m1) { 1 , . . . , n } \{1,...,n\} {1,...,n}的任何子集,则 P ( A i 0 ∣ A i 1 . . . A i m ) = P ( A i 0 ) . P(A_{i_0}|A_{i_1}...A_{i_m})=P(A_{i_0}). P(Ai0Ai1...Aim)=P(Ai0).

  • 一组事件两两独立不能保证这组事件相互独立。

  • 全概公式:如果一列事件 B 1 , . . . , B n , . . . B_1,...,B_n,... B1,...,Bn,...两两不相容, P ( B i ) > 0 ( i = 1 , 2 , . . . ) P(B_i)>0\hspace{1em}(i=1,2,...) P(Bi)>0(i=1,2,...),且 ∪ i = 1 ∞ B i \mathop{\cup}\limits_{i=1}^\infty B_i i=1Bi是必然事件,则对任何事件A,皆有 P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) . P(A)=\sum\limits_{i=1}^\infty P(B_i)P(A|B_i). P(A)=i=1P(Bi)P(ABi).

  • 栗子:设甲有赌本M元,乙有赌本N元(M和N都是正整数)。每一局中,若甲胜,则乙给甲1元;若乙胜,则甲给乙1元(没有和局)。设每局中甲胜的概率是p(0<p<1),问:如果一局一局地赌博下去(直到有一方输光才停止),甲输光的概率是多少?
    p M = { ( q p ) M − ( q p ) M + N 1 − ( q p ) M + N , p ≠ 1 2 , N M + N , p = 1 2 . p_M=\left\{ \begin{aligned} \frac{(\frac qp)^M-(\frac qp)^{M+N}}{1-(\frac qp)^{M+N}},\hspace{1em} & p\neq \frac12, & \\ \frac N{M+N},\hspace{4.8em} & p=\frac12.& \\ \end{aligned} \right. pM= 1(pq)M+N(pq)M(pq)M+N,M+NN,p=21,p=21.

  • 栗子:一袋中装有n个球,其中 n 1 n_1 n1个红球, n 2 n_2 n2个黑球, n = n 1 + n 2 n=n_1+n_2 n=n1+n2。在此n个球中任意取出 m ( 1 ≤ m ≤ n ) m(1\le m\le n) m(1mn)个,再从这m个球中任意取出 r ( 1 ≤ r ≤ m ) r(1\le r\le m) r(1rm)个,设 r = r 1 + r 2 ( 0 ≤ r 1 ≤ n 1 , 0 ≤ r 2 ≤ n 2 ) r=r_1+r_2(0\le r_1\le n_1,0\le r_2\le n_2) r=r1+r2(0r1n1,0r2n2),问:此r个球中恰有 r 1 r_1 r1个红球, r 2 r_2 r2个黑球的概率是多少? C n 1 r 1 C n 2 r 2 C n r \frac{C_{n_1}^{r_1}C_{n_2}^{r_2}}{C_n^r} CnrCn1r1Cn2r2

  • 逆概公式(贝叶斯公式):如果一列事件 B 1 , . . . , B n , . . . B_1,...,B_n,... B1,...,Bn,...两两不相容, P ( B i ) > 0 ( i = 1 , 2 , . . . ) P(B_i)>0\hspace{1em}(i=1,2,...) P(Bi)>0(i=1,2,...),且 ∪ i = 1 ∞ B i \mathop{\cup}\limits_{i=1}^\infty B_i i=1Bi是必然事件,则对任何事件A,只要 P ( A ) > 0 P(A)>0 P(A)>0,就有 P ( B k ∣ A ) = P ( B k ) P ( A ∣ B k ) ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) ( k = 1 , 2 , . . . ) P(B_k|A)=\frac{P(B_k)P(A|B_k)}{\sum\limits_{i=1}^\infty P(B_i)P(A|B_i)}\hspace{1em}(k=1,2,...) P(BkA)=i=1P(Bi)P(ABi)P(Bk)P(ABk)(k=1,2,...)

4. 独立试验序列

  • 第一近似公式:当n很大而p很小时,有 P ( A 发生 k 次 ) ≈ 1 k ! ( n p ) k e − n p . P(A发生k次)\approx\frac1{k!}(np)^ke^{-np}. P(A发生k)k!1(np)kenp.
    它的理论依据:如果 0 < p n < 1 0<p_n<1 0<pn<1,且 lim ⁡ n → ∞ n p n = λ > 0 \lim\limits_{n\to\infty}np_n=\lambda>0 nlimnpn=λ>0,则 lim ⁡ n → ∞ C n k p n k ( 1 − p n ) n − k = λ k k ! e − λ . \lim\limits_{n\to\infty}C_n^kp_n^k(1-p_n)^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda}. nlimCnkpnk(1pn)nk=k!λkeλ.

  • 第二近似公式:当n很大而p不是很小时,有 P ( A 发生 k 次 ) ≈ 1 n p ( 1 − p ) 1 2 π e − x k 2 , P(A发生k次)\approx \frac1{\sqrt{np(1-p)}}\frac1{\sqrt{2\pi}}e^{-x_k^2}, P(A发生k)np(1p) 12π 1exk2,其中 x k = k − n p n p ( 1 − p ) . x_k=\frac{k-np}{\sqrt{np(1-p)}}. xk=np(1p) knp.

  • 栗子:甲、乙两人进行比赛,一局一局地比下去,每局获胜者得1分,输者得0分,累计得分比另一人多2分者为优胜(比赛进行到产生优胜者后停止)。已知每局中甲获胜的概率是p,乙获胜的概率为q=1-p,没有和局,试求甲优胜的概率。 p 2 1 − 2 p q \frac{p^2}{1-2pq} 12pqp2

  • 栗子:设平面上有n个点(叫作顶点),任何两点连接一条线段(叫作边),这样得到的图叫作完全图。现在每条边上涂上颜色:红色或蓝色。任给整数 k ( 3 ≤ k ≤ n ) k(3\le k\le n) k(3kn)。问:是否存在一种着色方法,使得任何k个顶点其所有边的颜色不完全相同?
    C n k < 2 1 2 k ( k − 1 ) − 1 C_n^k<2^{\frac12k(k-1)-1} Cnk<221k(k1)1时,存在一种着色办法,使得任何k个点其各边的颜色不完全相同。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值