参考学习资料:扩散模型 - Diffusion Model【李宏毅2023】_哔哩哔哩_bilibili
相关论文&论文链接:
Denoising Diffusion Probabilistic Models (DDPM):https://arxiv.org/abs/2006.11239
Stable Diffusion:https://arxiv.org/abs/2112.10752
DALL-E series:https//arxiv.org/abs/2204.06125、https//arxiv.org/abs/2102.12092
Imagen:https://imagen.research.google/、https://arxiv.prg/abs/2205.11487
目录
1.1.1.2. 如何训练noise predictor模块
1.2. Forward Process(Diffusion Process)
2. 文字引导生成图片的diffusion model(Text-to-Image)
3. DDPM(Denoising Diffusion Probabilistic Models)
1. Diffusion Model是如何运作的:
1.1. reverse process:
输入一张充满噪声的图——denoise——输出一张noise少的图——denoise——输出一张noise更少的图——denoise——……——输出清晰的图片(如图1所示)

- 每张图的大小一致
1.1.1. denoise模块
- denoise的次数是事先定好的,通常会有一个编号
- 同一个denoise的model反复使用,但是输入不同,输入是图片+noise的严重程度(数字越大,noise越多),如图2所示

1.1.1.1. denoise模块介绍:

如图3所示:
①Noise Predicter:用来预测输入的图片里面的noise长什么样,输出一张Noise的图
②输入的图片 - Noise图 = 输出denoise之后的结果
1.1.1.2. 如何训练noise predictor模块
思考:如图4所示,如何搞groundtruth???

创造groundtruth:
如图5所示,清晰的图像——加噪声——有噪声的图像——加噪声——噪声更多的图像——加噪声——……——含很多噪声的图像
以上过程称为forward process/diffusion process
