Multiple View Geometry - Chaper 5(3)

1.Planar Homographies

单应矩阵

假定场景的点都落在一个平面上,第一帧定义点坐标系X_1\in \mathbb{R}^{3},平面的法向量N\in \mathbb{S}^{2},有

N^TX_1=d\quad \Leftrightarrow \quad \frac{1}{d}N^TX_1=1

第二帧有如下关系

X_2=RX_1+T=RX_1+T\frac{1}{d}N^TX_1=(R+\frac{1}{d}TN^T)X_1\equiv HX_1

其中H=R+\frac{1}{d}TN^T\quad \in \mathbb{R}^{3\times 3}

H是单应矩阵,引入2D坐标系有

\lambda _2x_2=H\lambda_1x_1\quad \Leftrightarrow \quad x_2\sim Hx_1

这个表达式是平面单应矩阵,从上式可以看出H与相机的旋转、平移以及平面的参数有关。

与对极几何相似的处理,左右同乘\widehat{x_2}

\widehat{x_2}Hx_1=0

称为平面对极约束或平面单应约束。

同样也可以写成下述形式,

a^TH^s=0\quad H^s=(H_{11},H_{12},...H_{33})\in \mathbb{R}^9

a\equiv x_1\otimes \widehat{x_2}\in \mathbb{R}^{9\times 3}

2.The Four Point Algorithm

四点算法

假定有两幅图中四对以上的2D相关点\left \{ x_1^j,x_2^j \right \},j=1,...,n\quad n\geq 4,每个点对引入一个矩阵a^j,形成一个大矩阵

\chi \equiv (a^1,...a^n)^T\in \mathbb{R}^{3n\times 9}

\chi H^s=0

可以看出四点法与八点法类似,四点算法中H分解为R,N和T/d。

本质矩阵E=\widehat{T}R与单应矩阵H=R+Tu^T,u\in \mathbb{R}^3 存在很多的关系,如

E=\widehat{T}H,H^TE+E^TH=0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值