1. 平面投影
1.1 平面单应矩阵
平面单应矩阵:就是平面的投影变换矩阵。
Homography matrix (单应性矩阵):
两个不同视角的图像上的点对的homogeneous coordinate可以用一个投影变换(projective transformation)表述,即:
x1 =H*x2
投影变换也叫“单应”--Homography,因此H就叫单应性矩阵。上式中的x1和x2都是3*1的齐次坐标,因此H是一个3*3的矩阵:{h00,h01,h02;h10,h11,h12;h20,h21,h22}。
1.2 正面图投影(Frontal Plane)
1.3 转换为像素坐标
1.4 总结
2. 单应矩阵的用途
3. 如何估计单应矩阵
代数、几何、分析 各自的范畴:
数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
Algebraic Distance: 代数距离
4. 应用:稳定性
5. 应用:360度全景图