PAT 1015 Reversible Primes(素数判断)

A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.

Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.

Input Specification:

The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.

Output Specification:

For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.

题目开始优点难理解,但搞清楚一点,一个正数无论用几进制表示,是否是素数始终不变,本题难点是将N在D禁止下对应的逆表示出来,化成十进制再判断即可。

代码如下:

#include<iostream>
#include<cmath>
using namespace std;
int num[100]={0};
bool judge(int M){
    if(M<2)
        return false;
    for(int i=2;i*i<=M;i++)
        if(M%i==0)
            return false;
    return true;
}
int exchange(int M,int N){
    int i=0;
    while(M){
        num[i++]=M%N;
        M=M/N;
    }
    M=num[i-1];
    int mul=N;
    for(int j=i-2;j>=0;j--){
        M+=num[j]*mul;
        mul=mul*N;
    }
    return M;
}
int main()
{
    int M,N;
    while(cin>>M){
        if(M<0)
            break;
        cin>>N;
    if(!judge(M)){
        cout<<"No\n";
    }
    else{
        M=exchange(M,N);
        if(!judge(M)){
            cout<<"No\n";
        }
        else
            cout<<"Yes\n";
    }
    }
    return 0;
}

样例测试结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值