A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
题目开始优点难理解,但搞清楚一点,一个正数无论用几进制表示,是否是素数始终不变,本题难点是将N在D禁止下对应的逆表示出来,化成十进制再判断即可。
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int num[100]={0};
bool judge(int M){
if(M<2)
return false;
for(int i=2;i*i<=M;i++)
if(M%i==0)
return false;
return true;
}
int exchange(int M,int N){
int i=0;
while(M){
num[i++]=M%N;
M=M/N;
}
M=num[i-1];
int mul=N;
for(int j=i-2;j>=0;j--){
M+=num[j]*mul;
mul=mul*N;
}
return M;
}
int main()
{
int M,N;
while(cin>>M){
if(M<0)
break;
cin>>N;
if(!judge(M)){
cout<<"No\n";
}
else{
M=exchange(M,N);
if(!judge(M)){
cout<<"No\n";
}
else
cout<<"Yes\n";
}
}
return 0;
}
样例测试结果如下: