【深度学习00】绪论

前言:

有两点是大家必须去关注的:

1. 深度学习的基础理论:不仅仅在知道某个网络他的结构这样一个很浅的基础上,需要知道这个网络具体的,比如说参数是如何计算的,他的代码实现是怎么去做的,甚至你可以去自己构建一个网络,当然这就需要你对这个网络本身有着深入的了解,对代码水平方面提出了更高的层次。

2. 实践层面:不要拿一个数学理论的眼光去看待深度学习和人工智能,这是一个非常基础的看法,人工智能本身就是一个实践的学科,他是计算机科学的一部分。他的基础永远不是数学理论,也永远不是某些深度学习的paper,他的基础是计算机科学。而掌握一个良好的编程能力对于学习深度学习来说是一个非常好的起点。

There are a few points that everyone must pay attention to:

1. Theoretical level:The basic theory of deep learning is not only based on the shallow foundation of knowing the structure of a certain network, but also needs to know the specifics of the network, such as how the number of parameters is calculated, how its code is implemented, and you can even build a network by yourself. This requires you to have a deep understanding of the network itself, and a higher level of code level is proposed.

2. Practical level:Don't look at deep learning and artificial intelligence from the perspective of a mathematical theory. This is a very basic view. Artificial intelligence itself is a practical subject, which is a part of computer science. His foundation is never mathematical theory, nor is it some deep learning paper. His foundation is computer science. And mastering a very good programming ability is a terrific starting point for learning deep learning.

绪论

大数据时代,大家挖掘的往往是结构化的数据,现在深度学习的时代,深度学习所学习的往往是非结构化的数据,深度学习为人类数据学习的过程打开了一个新的大门。

1.1 人工智能的萌芽和生长——从专家系统到机器学习:

专家系统:只能处理一些及其可控的问题,推广能力非常差。
机器学习:能够通过现有的数据中进行学习。但是特征提取的过程还是需要人的存在。所以机器学习,本质上不是一个端到端(End to End)的学习过程。

什么是“端到端”?—— 我们输入原始数据和label,也就是一些样本。并且无需人工干预,就能够建立整个模型。

 1.2 数据驱动的人工智能

大数据技术的出现

  • 数据的涌现

4V - Volume( 容量 ); Variety ( 多样性 ); Value ( 价值 ); Velocity ( 速度)

  • 计算能力的提升

CPU; GPU;异构计算; 分布式集群

大数据的发展给人工智能的表演提供了舞台。

2.1一些简单的人工智能问题

有监督:
拟合-Regression
分类-Classification(90%的问题都属于分类问题)

无监督:
聚类-Clustering(重要程度仅次于分类问题)
异常检测-Anomaly Detection

2.2 复杂的人工智能问题

下图左边属于图像分割(语义分割),右图属于目标检测。目前只有深度学习才能搞定。

3.1 为什么要做深度学习 ?

  • 对比机器学习,其实机器学习更像是老师给孩子一本书,并指出哪些是重点。然后这个孩子根据这些重点提取的特征来进行学习。
  • 但是深度学习我们并没有告诉它哪些是重点。直接给它扔了一堆教材让它去学。而它的智商也的确很高,能够学到更多的东西。
  • 随着数据量的逐渐增加,一开始可能机器学习性能会优于深度学习,因为在学习任务相对比较少的情况下,你画了重点,跟没画重点,考试结果肯定是会有所差别的。但是一旦到达某个数据临界点,深度学习超过了机器学习,机器学习往后的性能表现就开始比较平滑,完全比不上深度学习。深度学习的智商肯定是要高过机器学习的。但条件是需要有足够的数据支撑,否则巧妇难为无米之炊。

于是乎在深度学习这样一个范式下,跨界成了一个特别流行的词,因为许多计算机的同学发现自己无所不能,只要有标注数据,即便不懂得行业知识,我就可以做我的深度学习模型,所谓:我不行,但我的模型可以!

总之深度学习正在,变革我们的生活方式,驱动这个时代的发展,让我们一起加入这个令人兴奋的领域吧。

目录:

理论学习:
01神经网络深入
02图像分类与目标检测
03图像分割
04 高级循环神经网络
05分布式深度学习系
06深度学习前沿

核心实战:
07应用于大规模数据集的图像分类模型
08建立病理影像的病变区域分割模型
09分布式深度学习推理系统

1. 神经网络深入——掌握常用的神经网络的参数优化及正则化方法

本章内容:
1. 深度学习基础知识
2. 优化器的原理与使用场景
3. 使用不同的优化器训练深度神经网络

4. 在神经网络中加入常用的正则化方法
5. 深度学习模型的评价指标
6. 深度学习的应用场景

核心能力:
1.欠拟合与过拟合的概念
2.不同的神经网络参数优化方法
3.Lasso与Ridge正则化方法
4.在神经网络训练过程中加入Dropout
5.在模型优化过程中动态调节学习率

2. 图像分类与目标检测——深入学习用于图像分类与目标检测的卷积神经网络

本章内容:
1. 卷积神经网络(CNN)的基础理论
2. 典型CNN网络结构详解
3. 常用的CNN优化技巧
4. 在MNIST数据集上运行多种网络结构
5. 应用于目标检测领域的CNN
6. 目标检测模型的演进之路

核心能力:
1.图像分类与目标检测的基本概念及应用场景
2.用于图像分类的模型结构
3.不同模型结构对图像分类效果的影响
4.用于目标检测的深度学习模型
5.在GPU上运行深度学习代码

3. 图像分割——深入学习用于图像分割的卷积神经网络

本章内容:
1. 全卷积神经网络的概念
2. CNN训练过程中的数据增强方法
3. 应用于图像分割的CNN
4. 两种图像分割模型体系的对比
5. DIY U-Net网络结构
6. 在小规模数据集上,训练U-Net网络

核心能力:
1. 图像分割的基本概念与应用场景
2. 应用于图像分割的模型结构
3. 图像分割与图像分类、目标检测的异同
4. 使用TensorFlow编写图像分割模型

5. 深入理解端到端(End-to-End)学习

4. 高级循环神经网络——掌握自然语言处理的基础知识与循环神经网络的高阶概念

本章内容:
1. 循环神经网络(RNN)基础
2. 自然语言处理基础知识
3. 实现以GRU为基本单元的RNN

4. 实现以LSTM为基本单元的RNN
5. 使用RNN实现MNIST预测

6. 基于RNN的交易欺诈检测

核心能力:
1. 自然语言处理的基本概念
2. RNN模型结构
3. 将RNN应用于真实场景
4. 使用TensorFlow编写RNN模型

5. 分布式深度学习系统——掌握分布式深度学习模型训练与推理流程

本章内容:
1. GPU理论基础
2. 在CNN上,实现多GPU数据并行模型训练
3. 将多GPU模型训练方法应用于循环神经网络
4. 单机版模型推理系统
5. 分布式系统概述
6.  基于TensorFlow Serving的分布式模型推理系统

核心能力:
1.数据并行与模型并行的基础理论
2.数据并行的多GPU模型训练方法
3.分布式系统的基础理论
4.TensorFlow Serving基础架构
5.构建基于TensorFlow Serving的分布式模型推理系统

6. 深度学习前沿——了解深度学习的发展前沿,掌握强化学习、生成对抗网络的基础知识

本章内容:
1. 深度学习前沿概述
2. 生成对抗网络(GAN)基础理论
3. DIY一个GAN
4. 使用GAN生成“假”图像
5. 强化学习的基本概念
6. AlphaGo的设计理念与工程实现

核心能力:
1. 强化学习的基础理论与应用场景
2. AlphaGo的设计理念与系统架构
3. GAN的理论体系
4. GAN在实践中的应用
5. 使用TensorFlow编写GAN

7. 图像分类实战——应用于大规模数据集的图像分类模型

项目亮点:
编写VGG-19、ResNet-50、Inception v3等卷积神经网络结构,应用于CIFAR数据集,掌握基于TensorFlow的模型构建方法与各模型的异同

1. 手动实现著名的CNN结构,应用在真实的大规模数据集
2. 夯实TensorFlow的编码基础,掌握基础的图像分类模型

核心技术:
1. 使用TensorFlow编写模型结构
2. 大规模图像数据集的数据读取模块构建
3. 模型参数优化的基本要素:成本函数、优化器器、优化过程等
4. 不同网络结构的性能对比

8. 图像分割实战——建立病理影像的病变区域分割模型

项目亮点:
编写U-Net及DeepLab v3两种图像分割网络,应用于真实病理影像数据集,掌握图像分割预测结果的后处理方式,探索不同网络结构对模型效果的影响

1. 使用来自医院的真实病理影像数据和标注进行模型训练
2. 掌握图像分割的模型结构

核心技术:
1. 使用TensorFlow编写模型结构
2. 在真实样本上构建数据读取与模型训练的全流程
3. 在模型迭代过程中,选择适当的超参数(学习率、Batch Size、GPU数等)
4. 通过数据增强提高模型的鲁棒性
5. 图像分割模型预测结果的后处理方法

9. 分布式系统实战——分布式深度学习推理系统

项目亮点:
基于容器技术,结合TensorFlow Serving的工业化部署能力,构建分布式深度学习推理系统。实现多GPU并行的模型推理过程

1. 使用Docker与TensorFlow Serving架构应用于多GPU的推理系统
2. 掌握分布式系统架构的基础方法论

核心技术:
1. 基于Docker的容器化技术,实现GPU级别的资源隔离
2. 分布式系统架构的基本要素
3. 使用TensorFlow Serving实现模型的高效推理
4. 将整套系统应用于生产实践

10. 关于薪资水平:

大概年薪:25W-80W

其中:25W是一个算法工程师的水平,80W是一个算法科学家或者算法管理人员的水平。

25W意味着:对于基础理论非常的了解,能够去实现一些现有的模型架构,能够在工程实践中实现一些简单的模型体系去解决现实的问题。再往上意味着能够去构建自己的网络结构,甚至构建自己的工程结构。

80W除了以上的能力之外,拥有非常丰富的架构能力。同时拥有一定的管理能力。能够带领一帮小兄弟完成一个项目从初始到最终的过程。

在学习过程中,要不断对自己提出更高的要求:

1. 在基础理论学习的时候,要想到自己的基础理论是否足够的扎实,一些问题是不是我应该找一些paper去读。

2. 在工程实践的时候,会讲到很多系统架构层面的基础理论,大家是不是应该去找一些教材,去更加深入地了解系统架构的知识。

3. 在代码实战的过程中,大家是否能够跳出这个项目,把自己作为这个项目的leader,去思考这样一个项目他的前因后果是什么;如果大家是一个项目经理,应该怎么去规划项目的研发进度、最开始该怎么获取数据、如何去构造一套模型的全流程体系、如何去把模型进行更快速的上线、同时这个模型未来会有哪些潜在的商业价值,甚至说大家可以想到这个产品未来的形态是什么、他的客户群体是谁。

如果有了这样一个能力,相信大家能够从25W跃迁到80W的年薪。当然到达80W的年薪是需要时间积累的,管理人和管理技术会有一定的区别,所以大家在以后的工作学习中能够多思考,多实践,把自己的价值提高。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
第l章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 1.1研究的目的及意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 1.2图像识别概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一l 1.2.1图像的特征提取⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 1.2.2图像识别的方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 1.3深度学习的发展和研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..4 1.3.1深度学习的发展⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 1.3.2深度学习的研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 1.4特征学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..7 1.5主要研究工作及章节安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..8 1.5.1主要研究工作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 1.5.2论文章节安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 第2章深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ll 2.1什么是深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 2.1.1深度学习的概念⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1l 2.1.2浅层学习和深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..12 2.2深度学习的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 2.3深度学习常用方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 2.3.1深度信念网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..14 2.3.2卷积神经网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..15 2.3.3卷积深度信念网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..15 2.3.4深度玻尔兹曼机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..16 2.3.5栈式自动编码器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..16 2.4 I也M⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一17 2.4.1 I心M的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 V 万方数据 太原理工大学硕士研究生学位论文 2.4.2 RBM的训练⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19 2.5 CI也M⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 2.6本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23 第3章深度学习结合SVM的图像识别方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.25 3.1支持向量机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 3.2数据预处理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29 3.2.1数据归一化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..29 3.2.2白化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..30 3.2.3数据模块化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 1 3.3深度学习结合支持向量机的分类方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32 3.3.1数据初始化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..32 3.3.2模型描述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一32 3.3.3训练和分类过程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..33 3.3.4 MINIST数据集简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35 3.4实验结果和分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35 3.4.1样本数、节点数、层数的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一36 3.4.2 SVM参数的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯38 3.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4l 第4章改进的CDBN用于图像识别⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.1无监督预训练⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.2交替进行无监督和有监督学习的基本思想⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.3卷积和池化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44 4.4 So胁ax分类器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.45 4.5基于改进的深度网络的图像识别⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯46 4.5.1模型描述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一46 4.5.2 Cifar-10数据集简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯47

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值