【考研数学一·高数(9)】多元函数积分学的基础知识

1.向量的运算及其应用

a = ( a x , a y , a z ) \bold{a}=(a_x,a_y,a_z) a=(ax,ay,az) b = ( b x , b y , b z ) \bold{b}=(b_x,b_y,b_z) b=(bx,by,bz) c = ( c x , c y , c z ) \bold{c}=(c_x,c_y,c_z) c=(cx,cy,cz)均为非零向量

  • 数量积(点积、内积)

    1. a ⋅ b = a x b x + a y b y + a z b z \bold{a\cdot b}=a_xb_x+a_yb_y+a_zb_z ab=axbx+ayby+azbz

    2. a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \bold{a\cdot b}=|\bold{a}||\bold{b}|\cos\theta ab=a∣∣bcosθ

      cos ⁡ θ = a ⋅ b ∣ a ∣ ∣ b ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \cos\theta=\frac{\bold{a\cdot b}}{|\bold{a}||\bold{b}|}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{a_x^2+a_y^2+a_z^2}\sqrt{b_x^2+b_y^2+b_z^2}} cosθ=a∣∣bab=ax2+ay2+az2 bx2+by2+bz2 axbx+ayby+azbz

    3. a \bold{a} a b \bold{b} b上的投影: P r j b a = a x b x + a y b y + a z b z b x 2 + b y 2 + b z 2 Prj_{\bold{b}}\bold{a}=\frac{a_xb_x+a_yb_y+a_zb_z}{\sqrt{b_x^2+b_y^2+b_z^2}} Prjba=bx2+by2+bz2 axbx+ayby+azbz

    4. a ⊥ b ⇔ a x b x + a y b y + a z b z = 0 \bold{a}\perp\bold{b}\Leftrightarrow a_xb_x+a_yb_y+a_zb_z=0 abaxbx+ayby+azbz=0

  • 向量积(外积、叉积)

    1. a × b = ∣ i j k a x a y a z b x b y b z ∣ , ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ \bold{a}\times\bold{b}=\begin{vmatrix}\bold{i}&\bold{j}&\bold{k}\\a_x&a_y&a_z\\b_x&b_y&b_z\end{vmatrix},|\bold{a}\times\bold{b}|=|\bold{a}||\bold{b}|\sin\theta a×b= iaxbxjaybykazbz ,a×b=a∣∣bsinθ
    2. a ∥ b ⇔ a x b x = a y b y = a z b z \bold{a}\parallel\bold{b}\Leftrightarrow\frac{a_x}{b_x}=\frac{a_y}{b_y}=\frac{a_z}{b_z} abbxax=byay=bzaz
  • 混合积

    1. [ a b c ] = ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ [\bold{abc}]=(\bold{a}\times\bold{b})\bold{\cdot c}=\begin{vmatrix}a_x&a_y&a_z\\b_x&b_y&b_z\\c_x&c_y&c_z\end{vmatrix} [abc]=(a×b)c= axbxcxaybycyazbzcz
    2. ∣ a x a y a z b x b y b z c x c y c z ∣ = 0 ⇔ \begin{vmatrix}a_x&a_y&a_z\\b_x&b_y&b_z\\c_x&c_y&c_z\end{vmatrix}=0\Leftrightarrow axbxcxaybycyazbzcz =0三向量共面
  • 向量的方向角和方向余弦

    1. a \bold{a} a的方向角: a \bold{a} a x x x轴、 y y y轴和 z z z轴正向的夹角 α , β , γ \alpha,\beta,\gamma α,β,γ
    2. a \bold{a} a的方向余弦: cos ⁡ α = a x ∣ a ∣ , cos ⁡ β = a y ∣ a ∣ , cos ⁡ γ = a z ∣ a ∣ \cos\alpha=\frac{a_x}{|\bold{a}|},\cos\beta=\frac{a_y}{|\bold{a}|},\cos\gamma=\frac{a_z}{|\bold{a}|} cosα=aax,cosβ=aay,cosγ=aaz
    3. a \bold{a} a的单位向量: a ∘ = a ∣ a ∣ = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) \bold{a}^\circ=\frac{\bold{a}}{|\bold{a}|}=(\cos\alpha,\cos\beta,\cos\gamma) a=aa=(cosα,cosβ,cosγ)

2.空间平面与直线

2.1.平面方程

法向量 n = ( A , B , C ) { 一般式     A x + B y + C z + D = 0 点法式     A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 三点式     ∣ x − x 1    y − y 1    z − z 1 x − x 2    y − y 2    z − z w x − x 2    y − y 3    z − z 3 ∣ = 0 截距式     x a + y b + z c = 1 \bold{n}=(A,B,C)\begin{cases}一般式~~~~Ax+By+Cz+D=0\\点法式~~~~A(x-x_0)+B(y-y_0)+C(z-z_0)=0\\三点式~~~~\left|\begin{matrix}x-x_1~~y-y_1~~z-z_1\\x-x_2~~y-y_2~~z-z_w\\x-x_2~~y-y_3~~z-z_3\end{matrix}\right|=0\\截距式~~~~\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\end{cases} n=(A,B,C) 一般式    Ax+By+Cz+D=0点法式    A(xx0)+B(yy0)+C(zz0)=0三点式     xx1  yy1  zz1xx2  yy2  zzwxx2  yy3  zz3 =0截距式    ax+by+cz=1

2.2.平面束方程

π i : A i x + B i y + C i z + D i = 0 , i = 1 , 2 \pi_i:A_ix+B_iy+C_iz+D_i=0,i=1,2 πi:Aix+Biy+Ciz+Di=0,i=1,2

L : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 L:\begin{cases}A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0\end{cases} L:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0的平面束方程为

A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0(不含 π 2 \pi_2 π2

A 2 x + B 2 y + C 2 z + D 2 + λ ( A 1 x + B 1 y + C 1 z + D 1 ) = 0 A_2x+B_2y+C_2z+D_2+\lambda(A_1x+B_1y+C_1z+D_1)=0 A2x+B2y+C2z+D2+λ(A1x+B1y+C1z+D1)=0(不含 π 1 \pi_1 π1

2.3.直线方程

方向向量 τ = ( l , m , n ) { 一般式     { A 1 x + B 1 y + C 1 z + D 1 = 0 , n 1 = ( A 1 , B 1 , C 1 ) A 2 x + B 2 y + C 2 z + D 2 = 0 , n 2 = ( A 2 , B 2 , C 2 )        n 1 与 n 2 不平行 , τ = n 1 × n 2 点向式 ( 标准式 )      x − x 0 l = y − y 0 m = z − z 0 n 参数式     { x = x 0 + l t y = y 0 + m t z = z 0 + n t 两点式     x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 \bold{\tau}=(l,m,n)\begin{cases}一般式~~~~\begin{cases}A_1x+B_1y+C_1z+D_1=0,\bold{n_1}=(A_1,B_1,C_1)\\A_2x+B_2y+C_2z+D_2=0,\bold{n_2}=(A_2,B_2,C_2)\end{cases}~~~~~~\bold{n_1}与\bold{n_2}不平行,\bold{\tau}=\bold{n_1}\times\bold{n_2}\\点向式(标准式)~~~~\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}\\参数式~~~~\begin{cases}x=x_0+lt\\y=y_0+mt\\z=z_0+nt\end{cases}\\两点式~~~~\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}\end{cases} τ=(l,m,n) 一般式    {A1x+B1y+C1z+D1=0,n1=(A1,B1,C1)A2x+B2y+C2z+D2=0,n2=(A2,B2,C2)      n1n2不平行,τ=n1×n2点向式(标准式)    lxx0=myy0=nzz0参数式     x=x0+lty=y0+mtz=z0+nt两点式    x2x1xx1=y2y1yy1=z2z1zz1

3.空间曲线与曲面

3.1.空间曲线

  1. 一般式 Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0

  2. 参数方程 Γ : { x = φ ( t ) y = ψ ( t ) z = ω ( t )      t ∈ [ α , β ] \Gamma:\begin{cases}x=\varphi(t)\\y=\psi(t)\\z=\omega(t)\end{cases}~~~~t\in[\alpha,\beta] Γ: x=φ(t)y=ψ(t)z=ω(t)    t[α,β]

3.2.空间曲面

  1. 曲面方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

  2. 二次曲面 { 椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 双叶双曲面 x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 椭圆抛物面 x 2 2 p + y 2 2 q = z ( p , q > 0 ) 旋转抛物面 x 2 + y 2 = z 椭圆锥面 x 2 a 2 + y 2 b 2 = z 2 c 2 双曲抛物面 ( 马鞍面 ) { − x 2 2 p + y 2 2 q = z ( p , q > 0 ) z = x y \begin{cases}椭球面\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\\单叶双曲面\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1\\双叶双曲面\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1\\椭圆抛物面\frac{x^2}{2p}+\frac{y^2}{2q}=z(p,q>0)\\旋转抛物面x^2+y^2=z\\椭圆锥面\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}\\双曲抛物面(马鞍面)\begin{cases}-\frac{x^2}{2p}+\frac{y^2}{2q}=z(p,q>0)\\z=xy\end{cases}\end{cases} 椭球面a2x2+b2y2+c2z2=1单叶双曲面a2x2+b2y2c2z2=1双叶双曲面a2x2b2y2c2z2=1椭圆抛物面2px2+2qy2=z(p,q>0)旋转抛物面x2+y2=z椭圆锥面a2x2+b2y2=c2z2双曲抛物面(马鞍面){2px2+2qy2=z(p,q>0)z=xy

  3. 柱面

    • 动直线沿定曲线平行移动形成的曲面
    • { 椭圆柱面 x 2 a 2 + y 2 b 2 = 1 双曲柱面 x 2 a 2 − y 2 b 2 = 1 抛物柱面 y = a x 2 \begin{cases}椭圆柱面\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\双曲柱面\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\抛物柱面y=ax^2\end{cases} 椭圆柱面a2x2+b2y2=1双曲柱面a2x2b2y2=1抛物柱面y=ax2

3.3.旋转曲面

曲线 Γ \Gamma Γ绕一条定直线旋转一周形成的曲面

  • 旋转曲面方程求法:

    曲线 Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0,直线 L : x − x 0 m = y − y 0 n = z − z 0 p L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mxx0=nyy0=pzz0

    已知点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0),方向向量 s = ( m , n , p ) \bold{s}=(m,n,p) s=(m,n,p)

    在母线 Γ \Gamma Γ上任取一点 M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1),则过 M 1 M_1 M1的纬圆上任意一点 P ( x , y , z ) P(x,y,z) P(x,y,z)满足 M 1 P → ⊥ s , ∣ M 0 P → ∣ = ∣ M 0 M 1 ∣ → \overrightarrow{M_1P}\perp\bold{s},|\overrightarrow{M_0P}|=|\overrightarrow{M_0M_1|} M1P s,M0P =M0M1

    { m ( x − x 1 ) + n ( y − y 1 ) + p ( z − z 1 ) = 0 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 + ( z 1 − z 0 ) 2 \begin{cases}m(x-x_1)+n(y-y_1)+p(z-z_1)=0\\{(x-x_0)}^2+{(y-y_0)}^2+{(z-z_0)}^2={(x_1-x_0)}^2+{(y_1-y_0)}^2+{(z_1-z_0)}^2\end{cases} {m(xx1)+n(yy1)+p(zz1)=0(xx0)2+(yy0)2+(zz0)2=(x1x0)2+(y1y0)2+(z1z0)2

    与方程 F ( x 1 , y 1 , z 1 ) = 0 F(x_1,y_1,z_1)=0 F(x1,y1,z1)=0 G ( x 1 , y 1 , z 1 ) = 0 G(x_1,y_1,z_1)=0 G(x1,y1,z1)=0联立消去 x 1 , y 1 , z 1 x_1,y_1,z_1 x1,y1,z1

  • x x x轴旋转一周而成的曲面

    Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 ⇒ { y = f 1 ( x ) z = f 2 ( x ) \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases}\Rightarrow\begin{cases}y=f_1(x)\\z=f_2(x)\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0{y=f1(x)z=f2(x),则旋转曲面方程为 y 2 + z 2 = [ f 1 ( x ) ] 2 + [ f 2 ( x ) ] 2 y^2+z^2=[f_1(x)]^2+[f_2(x)]^2 y2+z2=[f1(x)]2+[f2(x)]2

  • y y y轴旋转一周而成的曲面

    Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 ⇒ { x = f 3 ( y ) z = f 4 ( y ) \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases}\Rightarrow\begin{cases}x=f_3(y)\\z=f_4(y)\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0{x=f3(y)z=f4(y),则旋转曲面方程为 x 2 + z 2 = [ f 3 ( y ) ] 2 + [ f 4 ( y ) ] 2 x^2+z^2=[f_3(y)]^2+[f_4(y)]^2 x2+z2=[f3(y)]2+[f4(y)]2

  • z z z轴旋转一周而成的曲面

    Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 ⇒ { x = f 5 ( z ) y = f 6 ( z ) \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases}\Rightarrow\begin{cases}x=f_5(z)\\y=f_6(z)\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0{x=f5(z)y=f6(z),则旋转曲面方程为 x 2 + y 2 = [ f 5 ( z ) ] 2 + [ f 6 ( z ) ] 2 x^2+y^2=[f_5(z)]^2+[f_6(z)]^2 x2+y2=[f5(z)]2+[f6(z)]2

3.4.空间曲线的切线与法平面

  1. Γ : { x = φ ( t ) y = ψ ( t ) z = ω ( t )     t ∈ [ α , β ] \Gamma:\begin{cases}x=\varphi(t)\\y=\psi(t)\\z=\omega(t)\end{cases}~~~t\in[\alpha,\beta] Γ: x=φ(t)y=ψ(t)z=ω(t)   t[α,β]
    • 切向量: τ = ( φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) ) \bold{\tau}=(\varphi'(t_0),\psi'(t_0),\omega'(t_0)) τ=(φ(t0),ψ(t0),ω(t0))
    • 切线方程: x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \frac{x-x_0}{\varphi'(t_0)}=\frac{y-y_0}{\psi'(t_0)}=\frac{z-z_0}{\omega'(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0
    • 法平面: φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0 \varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0 φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0
  2. Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0
    • 切向量: τ = ( ∣ F y ′    F z ′ G y ′    G z ′ ∣ P 0 , ∣ F z ′    F x ′ G z ′    G x ′ ∣ P 0 , ∣ F x ′    F y ′ G x ′    G y ′ ∣ P 0 ) \bold{\tau}=(\left|\begin{matrix}F_y'~~F_z'\\G_y'~~G_z'\end{matrix}\right|_{P_0},\left|\begin{matrix}F_z'~~F_x'\\G_z'~~G_x'\end{matrix}\right|_{P_0},\left|\begin{matrix}F_x'~~F_y'\\G_x'~~G_y'\end{matrix}\right|_{P_0}) τ=( Fy  FzGy  Gz P0, Fz  FxGz  Gx P0, Fx  FyGx  Gy P0)
    • 切线方程: x − x 0 ∣ F y ′    F z ′ G y ′    G z ′ ∣ P 0 = y − y 0 ∣ F z ′    F x ′ G z ′    G x ′ ∣ P 0 = z − z 0 ∣ F x ′    F y ′ G x ′    G y ′ ∣ P 0 \frac{x-x_0}{\left|\begin{matrix}F_y'~~F_z'\\G_y'~~G_z'\end{matrix}\right|_{P_0}}=\frac{y-y_0}{\left|\begin{matrix}F_z'~~F_x'\\G_z'~~G_x'\end{matrix}\right|_{P_0}}=\frac{z-z_0}{\left|\begin{matrix}F_x'~~F_y'\\G_x'~~G_y'\end{matrix}\right|_{P_0}} Fy  FzGy  Gz P0xx0= Fz  FxGz  Gx P0yy0= Fx  FyGx  Gy P0zz0
    • 法平面: ∣ F y ′    F z ′ G y ′    G z ′ ∣ P 0 ( x − x 0 ) + ∣ F z ′    F x ′ G z ′    G x ′ ∣ P 0 ( y − y 0 ) + ∣ F x ′    F y ′ G x ′    G y ′ ∣ P 0 ( z − z 0 ) = 0 \left|\begin{matrix}F_y'~~F_z'\\G_y'~~G_z'\end{matrix}\right|_{P_0}(x-x_0)+\left|\begin{matrix}F_z'~~F_x'\\G_z'~~G_x'\end{matrix}\right|_{P_0}(y-y_0)+\left|\begin{matrix}F_x'~~F_y'\\G_x'~~G_y'\end{matrix}\right|_{P_0}(z-z_0)=0 Fy  FzGy  Gz P0(xx0)+ Fz  FxGz  Gx P0(yy0)+ Fx  FyGx  Gy P0(zz0)=0

3.5.空间曲面的切平面与法线

  1. F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

    • 法向量: n = ( F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) ) \bold{n}=(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0)) n=(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))
    • 法线方程: x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F_x'(x_0,y_0,z_0)}=\frac{y-y_0}{F_y'(x_0,y_0,z_0)}=\frac{z-z_0}{F_z'(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0
    • 切平面: F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F_x'(x_0,y_0,z_0)(x-x_0)+F_y'(x_0,y_0,z_0)(y-y_0)+F_z'(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0
  2. z = f ( x , y ) z=f(x,y) z=f(x,y)

    F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)z

3.6.空间曲线在坐标面上的投影

空间曲线 Γ \Gamma Γ x O y xOy xOy面上的投影:

Γ : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \Gamma:\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} Γ:{F(x,y,z)=0G(x,y,z)=0中的 z z z消去,得到 ϕ ( x , y ) = 0 \phi(x,y)=0 ϕ(x,y)=0,则曲线 Γ \Gamma Γ x O y xOy xOy面上的投影曲线包含于曲线 { ϕ ( x , y ) = 0 z = 0 \begin{cases}\phi(x,y)=0\\z=0\end{cases} {ϕ(x,y)=0z=0

4.位置关系

  1. 点到直线的距离
    • M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1)到直线 L : x − x 0 m = y − y 0 n = z − z 0 p L:\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} L:mxx0=nyy0=pzz0的距离
    • d = ∣ s × M 1 M → ∣ ∣ s ∣ = ∥ i j k m n p x 0 − x 1 y 0 − y 1 z 0 − z 1 ∥ m 2 + n 2 + p 2 d=\frac{|\bold{s}\times\overrightarrow{M_1M}|}{|\bold{s}|}=\frac{\begin{Vmatrix}\bold{i}&\bold{j}&\bold{k}\\m&n&p\\x_0-x_1&y_0-y_1&z_0-z_1\end{Vmatrix}}{\sqrt{m^2+n^2+p^2}} d=ss×M1M =m2+n2+p2 imx0x1jny0y1kpz0z1
    • 其中 M 1 M → = ( x 0 − x 1 , y 0 − y 1 , z 0 − z 1 ) , M = ( x 0 , y 0 , z 0 ) , s = ( m , n , p ) \overrightarrow{M_1M}=(x_0-x_1,y_0-y_1,z_0-z_1),M=(x_0,y_0,z_0),\bold{s}=(m,n,p) M1M =(x0x1,y0y1,z0z1),M=(x0,y0,z0),s=(m,n,p)
  2. 点到平面的距离
    • P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0的距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D
  3. 直线与直线
    • τ 1 = ( l 1 , m 1 , n 1 ) , τ 2 = ( l 2 , m 2 , n 2 ) \bold{\tau_1}=(l_1,m_1,n_1),\bold{\tau_2}=(l_2,m_2,n_2) τ1=(l1,m1,n1),τ2=(l2,m2,n2)分别为直线 L 1 , L 2 L_1,L_2 L1,L2的方向向量
      • L 1 ⊥ L 2 ⇔ τ 1 ⊥ τ 2 ⇔ l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 L_1\perp L_2\Leftrightarrow\bold{\tau_1}\perp\bold{\tau_2}\Leftrightarrow l_1l_2+m_1m_2+n_1n_2=0 L1L2τ1τ2l1l2+m1m2+n1n2=0
      • L 1 ∥ L 2 ⇔ τ 1 ∥ τ 2 ⇔ l 1 l 2 = m 1 m 2 = n 1 n 2 L_1\parallel L_2\Leftrightarrow\bold{\tau_1}\parallel\bold{\tau_2}\Leftrightarrow \frac{l_1}{l_2}=\frac{m_1}{m_2}=\frac{n_1}{n_2} L1L2τ1τ2l2l1=m2m1=n2n1
      • 直线 L 1 , L 2 L_1,L_2 L1,L2的夹角 θ = arccos ⁡ ∣ τ 1 ⋅ τ 2 ∣ ∣ τ 1 ∣ ∣ τ 2 ∣ \theta=\arccos\frac{|\bold{\tau_1\cdot\tau_2}|}{|\bold{\tau_1}||\bold{\tau_2}|} θ=arccosτ1∣∣τ2τ1τ2,其中 θ = min ⁡ { ( τ 1 , τ 2 ^ ) , π − ( τ 1 , τ 2 ^ ) } ∈ [ 0 , π 2 ] \theta=\min\{(\widehat{\bold{\tau_1},\bold{\tau_2}}),\pi-(\widehat{\bold{\tau_1},\bold{\tau_2}})\}\in[0,\frac{\pi}{2}] θ=min{(τ1,τ2 ),π(τ1,τ2 )}[0,2π]
  4. 平面与平面
    • 设平面 π 1 , π 2 \pi_1,\pi_2 π1,π2的法向量分别为 n 1 = ( A 1 , B 1 , C 1 ) , n 2 = ( A 2 , B 2 , C 2 ) \bold{n_1}=(A_1,B_1,C_1),\bold{n_2}=(A_2,B_2,C_2) n1=(A1,B1,C1),n2=(A2,B2,C2)
      • π 1 ⊥ π 2 ⇔ n 1 ⊥ n 2 ⇔ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \pi_1\perp \pi_2\Leftrightarrow\bold{n_1}\perp\bold{n_2}\Leftrightarrow A_1A_2+B_1B_2+C_1C_2=0 π1π2n1n2A1A2+B1B2+C1C2=0
      • π 1 ∥ π 2 ⇔ n 1 ∥ n 2 ⇔ A 1 A 2 = B 1 B 2 = C 1 C 2 \pi_1\parallel \pi_2\Leftrightarrow\bold{n_1}\parallel\bold{n_2}\Leftrightarrow \frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} π1π2n1n2A2A1=B2B1=C2C1
      • 平面 π 1 , π 2 \pi_1,\pi_2 π1,π2的夹角 θ = arccos ⁡ ∣ n 1 ⋅ n 2 ∣ ∣ n 1 ∣ ∣ n 2 ∣ \theta=\arccos\frac{|\bold{n_1\cdot n_2}|}{|\bold{n_1}||\bold{n_2}|} θ=arccosn1∣∣n2n1n2,其中 θ = min ⁡ { ( n 1 , n 2 ^ ) , π − ( n 1 , n 2 ^ ) } ∈ [ 0 , π 2 ] \theta=\min\{(\widehat{\bold{n_1},\bold{n_2}}),\pi-(\widehat{\bold{n_1},\bold{n_2}})\}\in[0,\frac{\pi}{2}] θ=min{(n1,n2 ),π(n1,n2 )}[0,2π]
  5. 平面与直线
    • 设直线 L L L的方向向量为 τ = ( l , m , n ) \bold{\tau}=(l,m,n) τ=(l,m,n),平面 π \pi π的法向量为 n = ( A , B , C ) \bold{n}=(A,B,C) n=(A,B,C)
      • L ⊥ π ⇔ τ ∥ n ⇔ l A = m B = n C L\perp\pi\Leftrightarrow\bold{\tau}\parallel\bold{n}\Leftrightarrow\frac{l}{A}=\frac{m}{B}=\frac{n}{C} LπτnAl=Bm=Cn
      • L ∥ π ⇔ τ ⊥ n ⇔ A l + B m + C n = 0 L\parallel\pi\Leftrightarrow\bold{\tau}\perp\bold{n}\Leftrightarrow Al+Bm+Cn=0 LπτnAl+Bm+Cn=0
      • 直线 L L L与平面 π \pi π的夹角 θ = arcsin ⁡ ∣ τ ⋅ n ∣ ∣ τ ∣ ∣ n ∣ \theta=\arcsin\frac{|\bold{\tau\cdot n}|}{|\bold{\tau}||\bold{n}|} θ=arcsinτ∣∣nτn,其中 θ = ∣ π 2 − ( τ , n ^ ) ∣ ∈ [ 0 , π 2 ] \theta=|\frac{\pi}{2}-(\widehat{\bold{\tau},\bold{n}})|\in[0,\frac{\pi}{2}] θ=2π(τ,n )[0,2π]

5.场论初步

5.1.方向导数

  1. 定义
    • 设三元函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)的某空间邻域 U ⊂ R 3 U\subset R^3 UR3内有定义, l l l为从点 P 0 P_0 P0出发的射线, P ( x , y , z ) P(x,y,z) P(x,y,z) l l l上且在 U U U内的任一点,则 { x − x 0 = Δ x = t cos ⁡ α y − y 0 = Δ y = t cos ⁡ β z − z 0 = Δ z = t cos ⁡ γ \begin{cases}x-x_0=\Delta x=t\cos\alpha\\y-y_0=\Delta y=t\cos\beta\\z-z_0=\Delta z=t\cos\gamma\end{cases} xx0=Δx=tcosαyy0=Δy=tcosβzz0=Δz=tcosγ,以 t = ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 t=\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2} t=(Δx)2+(Δy)2+(Δz)2 表示 P P P P 0 P_0 P0之间的距离。
    • 若极限 lim ⁡ t → 0 + u ( P ) − u ( P 0 ) t = lim ⁡ t → 0 + u ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β , z 0 + t cos ⁡ γ ) − u ( x 0 , y 0 , z 0 ) t \lim\limits_{t\to0^+}\frac{u(P)-u(P_0)}{t}=\lim\limits_{t\to0^+}\frac{u(x_0+t\cos\alpha,y_0+t\cos\beta,z_0+t\cos\gamma)-u(x_0,y_0,z_0)}{t} t0+limtu(P)u(P0)=t0+limtu(x0+tcosα,y0+tcosβ,z0+tcosγ)u(x0,y0,z0)存在,则称此极限为函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z) P 0 P_0 P0处沿方向 l \bold{l} l的方向导数,记作 ∂ u ∂ l ∣ P 0 \frac{\partial{u}}{\partial{\bold{l}}}|_{P_0} luP0
  2. 定理
    • 设三元函数 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)处可微分,则 u = u ( x , y , z ) u=u(x,y,z) u=u(x,y,z)在点 P 0 P_0 P0处沿任意方向 l \bold{l} l的方向导数都存在,且 ∂ u ∂ l ∣ P 0 = u x ′ ( P 0 ) cos ⁡ α + u y ′ ( P 0 ) cos ⁡ β + u z ′ ( P 0 ) cos ⁡ γ \frac{\partial u}{\partial\bold{l}}|_{P_0}=u_x'(P_0)\cos\alpha+u_y'(P_0)\cos\beta+u'_z(P_0)\cos\gamma luP0=ux(P0)cosα+uy(P0)cosβ+uz(P0)cosγ

5.2.梯度

g r a d   u ∣ P 0 = ( u x ′ ( P 0 ) , u y ′ ( P 0 ) , u z ′ ( P 0 ) ) \bold{grad}~u|_{P_0}=(u_x'(P_0),u_y'(P_0),u_z'(P_0)) grad uP0=(ux(P0),uy(P0),uz(P0))

  • 函数在某点处的梯度是一个向量,它的方向与取得最大方向导数的方向一致,它的模为方向导数的最大值 ∣ g r a d   u ∣ = ( u x ′ ) 2 + ( u y ′ ) 2 + ( u z ′ ) 2 |\bold{grad}~u|=\sqrt{(u'_x)^2+(u'_y)^2+(u'_z)^2} grad u=(ux)2+(uy)2+(uz)2

5.3.散度

d i v   A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z div~\bold{A}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} div A=xP+yQ+zR

5.4.旋度

r o t   A = ∣ i      j      k ∂ ∂ x    ∂ ∂ y    ∂ ∂ z P     Q     R ∣ \bold{rot}~\bold{A}=\left|\begin{matrix}\bold{i}~~~~\bold{j}~~~~\bold{k}\\\frac{\partial}{\partial x}~~\frac{\partial}{\partial y}~~\frac{\partial}{\partial z}\\P~~~Q~~~R\end{matrix}\right| rot A= i    j    kx  y  zP   Q   R

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值