【考研数学1·概率论与数理统计(1)】随机事件与概率

1.基本概念

  1. 随机试验(E)

    • 满足:可重复、所有可能结果明确可知且不止一个、每次出现哪个结果事先不知道
  2. 随机事件

    • 在一次试验中可能出现,也可能不出现的结果

    • 必然事件( Ω \Omega Ω):每次试验中一定发生的事件

    • 不可能事件( ∅ \empty ):每次试验中一定不发生的事件

  3. 样本空间

    • 样本点( ω \omega ω):随机试验的每一个可能结果
    • 样本空间( Ω \Omega Ω):样本点的全体组成的集合, Ω = { ω } \Omega=\{\omega\} Ω={ω}
    • 基本事件:由一个样本点构成的事件

2.事件的关系与运算

2.1.关系

  1. 包含 A ⊂ B A\subset B AB

  2. 相等 A = B A=B A=B

  3. 积事件(交事件) A ∩ B A\cap B AB A B AB AB

  4. 相容 A B ≠ ∅ AB\ne\empty AB=

    互斥 A B = ∅ AB=\empty AB=

  5. 和事件(并事件) A ∪ B A\cup B AB

  6. 差事件 A − B A-B AB

  7. 逆事件(对立事件) A ‾ \overline{A} A

  8. 完备事件组 A 1 , A 2 , ⋯   , A n , ⋃ i = 1 n / ∞ A i = Ω , A i A j = ∅ A_1,A_2,\cdots,A_n,\bigcup\limits_{i=1}^{n/\infty}A_i=\Omega,A_iA_j=\empty A1,A2,,An,i=1n/∞Ai=Ω,AiAj=

2.2.运算法则

  1. 吸收律 A ⊂ B ⇒ A ∪ B = B , A ∩ B = A A\subset B\Rightarrow A\cup B=B,A\cap B=A ABAB=B,AB=A
  2. 交换律 A ∪ B = B ∪ A , A ∩ B = B ∩ A A\cup B=B\cup A,A\cap B=B\cap A AB=BA,AB=BA
  3. 结合律 ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A\cup B)\cup C=A\cup(B\cup C),(A\cap B)\cap C=A\cap(B\cap C) (AB)C=A(BC),(AB)C=A(BC)
  4. 分配律 A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) , A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) , A ∩ ( B − C ) = ( A ∩ B ) − ( A ∩ C ) A\cap(B\cup C)=(A\cap B)\cup (A\cap C),A\cup(B\cap C)=(A\cup B)\cap(A\cup C),A\cap(B-C)=(A\cap B)-(A\cap C) A(BC)=(AB)(AC),A(BC)=(AB)(AC),A(BC)=(AB)(AC)
  5. 对偶律(德·摩根律) A ∪ B ‾ = A ‾ ∩ B ‾ , A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cup B}=\overline{A}\cap\overline{B},\overline{A\cap B}=\overline{A}\cup\overline{B} AB=AB,AB=AB

3.概率的定义

3.1.描述性定义

  • 通常将随机事件 A A A发生的可能性大小的度量(非负值)称为事件 A A A的发生概率,记为 P ( A ) P(A) P(A)

3.2.统计性定义

  • 频率:在相同条件下做重复试验,事件 A A A出现的次数 k k k和总的试验次数 n n n之比 k n \frac{k}{n} nk

  • 概率:当 n n n充分大时,频率稳定于某常数 p p p

  • 频率 ≠ \ne =概率,统计性定义无法准确给出某事件的概率

3.3.公理化定义

设随机试验的样本空间为 Ω , 如果对每一个事件 A 都有一个确定的实数 P ( A ) , 且事件函数 P ( ⋅ ) 满足 : ( 1 ) 非负性 : P ( A ) ⩾ 0 ( 2 ) 规范性 : P ( Ω ) = 1 ( 3 ) 可列可加性 : 对任意可列个两两互不相容事件 A 1 , A 2 , ⋯   , A n , ⋯ ( A i A j = ∅ ) , 有 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) 称 P ( ⋅ ) 为概率 , P ( A ) 为事件 A 的概率 . \begin{aligned} &设随机试验的样本空间为\Omega,如果对每一个事件A都有一个确定的实数P(A),且事件函数P(·)满足: \\&(1)非负性:P(A)\geqslant0 \\&(2)规范性:P(\Omega)=1 \\&(3)可列可加性:对任意可列个两两互不相容事件A_1,A_2,\cdots,A_n,\cdots(A_iA_j=\empty),有P(\bigcup\limits_{i=1}^\infty A_i)=\sum\limits_{i=1}^\infty P(A_i) \\&称P(·)为概率,P(A)为事件A的概率. \end{aligned} 设随机试验的样本空间为Ω,如果对每一个事件A都有一个确定的实数P(A),且事件函数P()满足:(1)非负性:P(A)0(2)规范性:P(Ω)=1(3)可列可加性:对任意可列个两两互不相容事件A1,A2,,An,(AiAj=),P(i=1Ai)=i=1P(Ai)P()为概率,P(A)为事件A的概率.

4.古典概型和几何概型

4.1.古典概型

  • 样本空间满足:

    1. 只有有限个样本点(基本事件)
    2. 每个样本点发生的可能性都一样
  • P ( A ) = 事件 A 所含基本事件的个数 基本事件总数 P(A)=\frac{事件A所含基本事件的个数}{基本事件总数} P(A)=基本事件总数事件A所含基本事件的个数

  • 计数方法

    1. 列举法
    2. 集合对应法
      • 加法原理、乘法原理、排列、组合
    3. 逆数法
      • P ( A ) = 1 − P ( A ‾ ) P(A)=1-P(\overline{A}) P(A)=1P(A)
  • 常见类型

    1. 直接用定义求概率

    2. 随机分配,将n个可辨质点随机地分配到N个盒子中

    3. 简单随机抽样

      抽样方式抽法总数
      先后有放回取 n n n N n N^n Nn
      先后无放回取 n n n P N n = N ( N − 1 ) ⋯ ( N − n + 1 ) P_N^n=N(N-1)\cdots(N-n+1) PNn=N(N1)(Nn+1)
      任取 n n n C N n C_N^n CNn

4.2.几何概型

  • 满足:
    1. 样本空间 Ω \Omega Ω是一个可度量的有界区域
    2. 每个样本点发生的可能性都一样
  • P ( A ) = S A 的几何度量 Ω 的几何度量 P(A)=\frac{S_A的几何度量}{\Omega的几何度量} P(A)=Ω的几何度量SA的几何度量

5.概率的基本性质与公式

5.1.性质

  1. 有界性: 0 ⩽ P ( A ) ⩽ 1 , P ( ∅ ) = 0 , P ( Ω ) = 1 0\leqslant P(A)\leqslant1,P(\empty)=0,P(\Omega)=1 0P(A)1,P()=0,P(Ω)=1
  2. 单调性: A ⊂ B ⇒ P ( B − A ) = P ( B ) − P ( A ) , P ( B ) ⩾ P ( A ) A\subset B\Rightarrow P(B-A)=P(B)-P(A),P(B)\geqslant P(A) ABP(BA)=P(B)P(A),P(B)P(A)
  • 注: A = ∅ ⇒ P ( A ) = 0 , P ( A ) = 0 ⇏ A = ∅ A=\empty\Rightarrow P(A)=0,P(A)=0\nRightarrow A=\empty A=P(A)=0,P(A)=0A=

    A = Ω ⇒ P ( A ) = 1 , P ( A ) = 1 ⇏ A = Ω A=\Omega\Rightarrow P(A)=1,P(A)=1\nRightarrow A=\Omega A=ΩP(A)=1,P(A)=1A=Ω

5.2.公式

5.2.1.逆事件概率公式

P ( A ‾ ) = 1 − P ( A ) P(\overline{A})=1-P(A) P(A)=1P(A)

5.2.2.加法公式

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ⩽ i i < i 2 ⩽ n n P ( A i 1 A i 2 ) + … + ( − 1 ) n − 1 P ( ⋂ i = 1 n A i ) P(\bigcup\limits_{i=1}^nA_i)=\sum\limits_{i=1}^nP(A_i)-\sum\limits_{1\leqslant i_i<i_2\leqslant n}^nP(A_{i_1}A_{i_2})+\ldots+{(-1)}^{n-1}P(\bigcap\limits_{i=1}^nA_i) P(i=1nAi)=i=1nP(Ai)1ii<i2nnP(Ai1Ai2)++(1)n1P(i=1nAi)

5.2.3.减法公式

P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B)=P(A)-P(AB)=P(A\overline{B}) P(AB)=P(A)P(AB)=P(AB)

5.2.4.条件概率

P ( B ∣ A ) = P ( A B ) P ( A ) , P ( A ) ≠ 0 P(B|A)=\frac{P(AB)}{P(A)},P(A)\ne0 P(BA)=P(A)P(AB),P(A)=0

P ( B ‾ ∣ A ) = 1 − P ( B ∣ A ) P(\overline{B}|A)=1-P(B|A) P(BA)=1P(BA)

5.2.5.乘法公式

P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(BA)

P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 A 2 … A n − 1 ) P(A_1A_2\ldots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\ldots P(A_n|A_1A_2\ldots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)

5.2.6.全概率公式

P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i )      ( A i 为完备事件组 ) P(B)=\sum\limits_{i=1}^nP(A_i)P(B|A_i)~~~~(A_i为完备事件组) P(B)=i=1nP(Ai)P(BAi)    (Ai为完备事件组)

5.2.7.贝叶斯公式(逆概率公式)

P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i )      ( A i 为完备事件组 ) P(A_j|B)=\frac{P(A_j)P(B|A_j)}{\sum\limits_{i=1}^nP(A_i)P(B|A_i)}~~~~(A_i为完备事件组) P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)    (Ai为完备事件组)

6.事件的独立性和独立重复试验

6.1.事件的独立性

  1. 定义
    • A A A B B B相互独立 ⇔ P ( A B ) = P ( A ) P ( B ) \Leftrightarrow P(AB)=P(A)P(B) P(AB)=P(A)P(B)
    • A 、 B 、 C A、B、C ABC相互独立 ⇔ { P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( A C ) = P ( A ) P ( C ) } 两两独立 P ( A B C ) = P ( A ) P ( B ) P ( C ) \Leftrightarrow\begin{cases}\left.\begin{matrix}P(AB)=P(A)P(B)\\P(BC)=P(B)P(C)\\P(AC)=P(A)P(C)\end{matrix}\right\}两两独立\\P(ABC)=P(A)P(B)P(C)\end{cases} P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(AC)=P(A)P(C) 两两独立P(ABC)=P(A)P(B)P(C)
  2. 判定
    • A A A B B B相互独立 ⇔ A \Leftrightarrow A A B ‾ \overline{B} B相互独立 ⇔ A ‾ \Leftrightarrow\overline{A} A B B B相互独立 ⇔ A ‾ \Leftrightarrow\overline{A} A B ‾ \overline{B} B相互独立
    • 对独立事件组不含相同事件作运算,得到的新事件组仍独立
    • A A A B B B相互独立 ⇔ P ( B ∣ A ) = P ( B )      ( P ( A ) > 0 ) \Leftrightarrow P(B|A)=P(B)~~~~(P(A)>0) P(BA)=P(B)    (P(A)>0)
    • A A A B B B相互独立 { ⇔ P ( B ∣ A ‾ ) = P ( B ∣ A ) ⇔ P ( B ∣ A ) + P ( B ‾ ∣ A ‾ ) = 1      ( 0 < P ( A ) < 1 ) \begin{cases}\Leftrightarrow P(B|\overline{A})=P(B|A)\\\Leftrightarrow P(B|A)+P(\overline{B}|\overline{A})=1\end{cases}~~~~(0<P(A)<1) {P(BA)=P(BA)P(BA)+P(BA)=1    (0<P(A)<1)
    • P ( A ) = 0 P(A)=0 P(A)=0 P ( A ) = 1 ⇒ A P(A)=1\Rightarrow A P(A)=1A与任意事件 B B B相互独立
    • 0 < P ( A ) < 1 , 0 < P ( B ) < 1 0<P(A)<1,0<P(B)<1 0<P(A)<1,0<P(B)<1 A A A B B B互斥或存在包含关系 ⇒ A \Rightarrow A A B B B一定不独立

6.2.试验的独立性

各个试验结果相互独立.

6.3.独立试验序列概型与n重伯努利概型

  • 独立试验序列概型:在同样条件下独立重复地进行一系列完全相同的试验
  • n重伯努利概型:每次试验只有两个结果 A A A A ‾ \overline{A} A,独立重复 n n n
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值