1.特征值与特征向量
1.1.定义
设 A A A是 n n n阶矩阵, λ \lambda λ是一个数,若存在 n n n阶非零列向量 ξ \xi ξ,使得 A ξ = λ ξ A\xi=\lambda\xi Aξ=λξ,则称 λ \lambda λ是 A A A的特征值, ξ \xi ξ是 A A A的对应于特征值 λ \lambda λ的特征向量.
1.2.用特征值命题
-
λ 0 \lambda_0 λ0是 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ = 0 \Leftrightarrow|\lambda_0E-A|=0 ⇔∣λ0E−A∣=0
λ 0 \lambda_0 λ0不是 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ ≠ 0 \Leftrightarrow|\lambda_0E-A|\ne0 ⇔∣λ0E−A∣=0
-
设 A = ( a i j ) n × n , λ i ( i = 1 , 2 , ⋯ , n ) A=(a_{ij})_{n\times n},\lambda_i(i=1,2,\cdots,n) A=(aij)n×n,λi(i=1,2,⋯,n)是 A A A的特征值 ⇒ { ∑ i = 1 n λ i = ∑ i = 1 n a i i = t r ( A ) ∏ i = 1 n λ i = ∣ A ∣ \Rightarrow\begin{cases}\sum\limits_{i=1}^n\lambda_i=\sum\limits_{i=1}^na_{ii}=tr(A)\\\prod\limits_{i=1}^n\lambda_i=|A|\end{cases} ⇒⎩ ⎨ ⎧i=1∑nλi=i=1∑naii=tr(A)i=1∏nλi=∣A∣
注:上、下三角矩阵与对角矩阵的特征值就是对角元素.
-
重要结论
矩阵 特征值 对应的特征向量 A A A λ \lambda λ ξ \xi ξ k A kA kA k λ k\lambda kλ ξ \xi ξ A k A^k Ak λ k \lambda^k λk ξ \xi ξ f ( A ) f(A) f(A) f ( λ ) f(\lambda) f(λ) ξ \xi ξ A − 1 A^{-1} A−1 1 λ \frac{1}{\lambda} λ1 ξ \xi ξ P − 1 A P P^{-1}AP P−1AP λ \lambda λ P − 1 ξ P^{-1}\xi P−1ξ P − 1 f ( A ) P P^{-1}f(A)P P−1f(A)P f ( λ ) f(\lambda) f(λ) P − 1 ξ P^{-1}\xi P−1ξ - A T A^T AT的特征值与 A A A相同,但特征向量不再是 ξ \xi ξ.
- A T A^T AT和 A A A属于不同特征值的特征向量正交.
- f ( x ) f(x) f(x)为多项式,若矩阵 A A A满足 f ( A ) = O f(A)=O f(A)=O, λ \lambda λ是 A A A的任一特征值,则 λ \lambda λ满足 f ( λ ) = 0 f(\lambda)=0 f(λ)=0.(解得的 λ \lambda λ只是范围,不一定是特征值)
1.3.用特征向量命题
-
ξ ( ≠ 0 ) \xi(\ne0) ξ(=0)是 A A A的属于 λ 0 \lambda_0 λ0的特征向量 ⇔ ξ \Leftrightarrow\xi ⇔ξ是 ( λ 0 E − A ) x = 0 (\lambda_0E-A)x=0 (λ0E−A)x=0的非零解
-
重要结论
-
k k k重特征值 λ \lambda λ至多只有 k k k个线性无关的特征向量.
-
ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2是 A A A的属于不同特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量 ⇒ ξ 1 , ξ 2 \Rightarrow\xi_1,\xi_2 ⇒ξ1,ξ2线性无关
{ λ 1 ≠ λ 2 ⇒ ξ 1 , ξ 2 线性无关 λ 1 = λ 2 ⇒ ξ 1 , ξ 2 可能 { 线性相关 线性无关 \begin{cases}\lambda_1\ne\lambda_2\Rightarrow\xi_1,\xi_2线性无关\\\lambda_1=\lambda_2\Rightarrow\xi_1,\xi_2可能\begin{cases}线性相关\\线性无关\end{cases}\end{cases} ⎩ ⎨ ⎧λ1=λ2⇒ξ1,ξ2线性无关λ1=λ
-