【考研数学一·线性代数(5)】特征值与特征向量

1.特征值与特征向量

1.1.定义

A A A n n n阶矩阵, λ \lambda λ是一个数,若存在 n n n非零列向量 ξ \xi ξ,使得 A ξ = λ ξ A\xi=\lambda\xi Aξ=λξ,则称 λ \lambda λ A A A的特征值, ξ \xi ξ A A A的对应于特征值 λ \lambda λ的特征向量.

1.2.用特征值命题

  1. λ 0 \lambda_0 λ0 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ = 0 \Leftrightarrow|\lambda_0E-A|=0 λ0EA=0

    λ 0 \lambda_0 λ0不是 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ ≠ 0 \Leftrightarrow|\lambda_0E-A|\ne0 λ0EA=0

  2. A = ( a i j ) n × n , λ i ( i = 1 , 2 , ⋯   , n ) A=(a_{ij})_{n\times n},\lambda_i(i=1,2,\cdots,n) A=(aij)n×n,λi(i=1,2,,n) A A A的特征值 ⇒ { ∑ i = 1 n λ i = ∑ i = 1 n a i i = t r ( A ) ∏ i = 1 n λ i = ∣ A ∣ \Rightarrow\begin{cases}\sum\limits_{i=1}^n\lambda_i=\sum\limits_{i=1}^na_{ii}=tr(A)\\\prod\limits_{i=1}^n\lambda_i=|A|\end{cases} i=1nλi=i=1naii=tr(A)i=1nλi=A

    注:上、下三角矩阵与对角矩阵的特征值就是对角元素.

  3. 重要结论

    矩阵特征值对应的特征向量
    A A A λ \lambda λ ξ \xi ξ
    k A kA kA k λ k\lambda ξ \xi ξ
    A k A^k Ak λ k \lambda^k λk ξ \xi ξ
    f ( A ) f(A) f(A) f ( λ ) f(\lambda) f(λ) ξ \xi ξ
    A − 1 A^{-1} A1 1 λ \frac{1}{\lambda} λ1 ξ \xi ξ
    P − 1 A P P^{-1}AP P1AP λ \lambda λ P − 1 ξ P^{-1}\xi P1ξ
    P − 1 f ( A ) P P^{-1}f(A)P P1f(A)P f ( λ ) f(\lambda) f(λ) P − 1 ξ P^{-1}\xi P1ξ
    • A T A^T AT的特征值与 A A A相同,但特征向量不再是 ξ \xi ξ.
    • A T A^T AT A A A属于不同特征值的特征向量正交.
    • f ( x ) f(x) f(x)为多项式,若矩阵 A A A满足 f ( A ) = O f(A)=O f(A)=O λ \lambda λ A A A的任一特征值,则 λ \lambda λ满足 f ( λ ) = 0 f(\lambda)=0 f(λ)=0.(解得的 λ \lambda λ只是范围,不一定是特征值)

1.3.用特征向量命题

  1. ξ ( ≠ 0 ) \xi(\ne0) ξ(=0) A A A的属于 λ 0 \lambda_0 λ0的特征向量 ⇔ ξ \Leftrightarrow\xi ξ ( λ 0 E − A ) x = 0 (\lambda_0E-A)x=0 (λ0EA)x=0的非零解

  2. 重要结论

    • k k k重特征值 λ \lambda λ至多只有 k k k个线性无关的特征向量.

    • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于不同特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量 ⇒ ξ 1 , ξ 2 \Rightarrow\xi_1,\xi_2 ξ1,ξ2线性无关

      { λ 1 ≠ λ 2 ⇒ ξ 1 , ξ 2 线性无关 λ 1 = λ 2 ⇒ ξ 1 , ξ 2 可能 { 线性相关 线性无关 \begin{cases}\lambda_1\ne\lambda_2\Rightarrow\xi_1,\xi_2线性无关\\\lambda_1=\lambda_2\Rightarrow\xi_1,\xi_2可能\begin{cases}线性相关\\线性无关\end{cases}\end{cases} λ1=λ2ξ1,ξ2线性无关λ1=λ2ξ1,ξ2可能{线性相关线性无关

    • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于同一特征值 λ \lambda λ的特征向量 ⇒ k 1 ξ 1 + k 2 ξ 2 \Rightarrow k_1\xi_1+k_2\xi_2 k1ξ1+k2ξ2( k 1 , k 2 k_1,k_2 k1,k2不同时为零)仍是 A A A的属于特征值 λ \lambda λ的特征向量

      ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于不同特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量 ⇒ k 1 ξ 1 + k 2 ξ 2 ( k 1 ≠ 0 , k 2 ≠ 0 ) \Rightarrow k_1\xi_1+k_2\xi_2(k_1\ne0,k_2\ne0) k1ξ1+k2ξ2(k1=0,k2=0)不是 A A A的任何特征值的特征向量

    • n n n阶矩阵 A , B A,B A,B满足 A B = B A AB=BA AB=BA,且 A A A n n n个互不相同的特征值 ⇒ A \Rightarrow A A的特征向量都是 B B B的特征向量

1.4.用矩阵方程命题

  1. A B = O ⇒ A [ β 1 , β 2 , ⋯   , β n ] = [ 0 , 0 , ⋯   , 0 ] AB=O\Rightarrow A[\beta_1,\beta_2,\cdots,\beta_n]=[0,0,\cdots,0] AB=OA[β1,β2,,βn]=[0,0,,0],即 A β i = 0 β i ( i = 1 , 2 , ⋯   , n ) A\beta_i=0\beta_i(i=1,2,\cdots,n) Aβi=0βi(i=1,2,,n),若 β i \beta_i βi均为非零列向量,则 β i \beta_i βi A A A的属于 λ = 0 \lambda=0 λ=0的特征向量.
  2. A B = C ⇒ A [ β 1 , β 2 , ⋯   , β n ] = [ γ 1 , γ 2 , ⋯   , γ n ] = 若 [ λ 1 β 1 , λ 2 β 2 , ⋯   , λ n β n ] AB=C\Rightarrow A[\beta_1,\beta_2,\cdots,\beta_n]=[\gamma_1,\gamma_2,\cdots,\gamma_n]\stackrel{若}{=}[\lambda_1\beta_1,\lambda_2\beta_2,\cdots,\lambda_n\beta_n] AB=CA[β1,β2,,βn]=[γ1,γ2,,γn]=[λ1β1,λ2β2,,λnβn],即 A β i = λ i β i ( i = 1 , 2 , ⋯   , n ) A\beta_i=\lambda_i\beta_i(i=1,2,\cdots,n) Aβi=λiβi(i=1,2,,n) β i \beta_i βi A A A的属于 λ i \lambda_i λi的特征向量.
  3. A P = P B , P AP=PB,P AP=PB,P可逆 ⇒ P − 1 A P = B ⇒ A ∼ B ⇒ λ A = λ B \Rightarrow P^{-1}AP=B\Rightarrow A\sim B\Rightarrow\lambda_A=\lambda_B P1AP=BABλA=λB
  4. A A A的每行元素之和均为 k ⇒ A [ 1 1 ⋮ 1 ] = k [ 1 1 ⋮ 1 ] ⇒ k k\Rightarrow A\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}=k\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}\Rightarrow k kA 111 =k 111 k是特征值, [ 1 1 ⋮ 1 ] \begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix} 111 A A A的属于 k k k的特征向量

2.相似对角化 ( A ∼ Λ ) (A\sim\Lambda) (AΛ)

A A A可相似对角化,即 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,其中 P P P可逆,则 A P = P Λ AP=P\Lambda AP=PΛ,记 P = [ ξ 1 , ξ 2 , ⋯   , ξ n ] , Λ = [ λ 1 λ 2 ⋱ λ n ] P=[\xi_1,\xi_2,\cdots,\xi_n],\Lambda=\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&\ddots\\&&&\lambda_n\end{bmatrix} P=[ξ1,ξ2,,ξn],Λ= λ1λ2λn ,则
A [ ξ 1 , ξ 2 , ⋯   , ξ n ] = [ ξ 1 , ξ 2 , ⋯   , ξ n ] [ λ 1 λ 2 ⋱ λ n ] A[\xi_1,\xi_2,\cdots,\xi_n]=[\xi_1,\xi_2,\cdots,\xi_n]\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&\ddots\\&&&\lambda_n\end{bmatrix} A[ξ1,ξ2,,ξn]=[ξ1,ξ2,,ξn] λ1λ2λn

2.1.充要条件

  1. A A A n n n个线性无关的特征向量 ⇔ A ∼ Λ \Leftrightarrow A\sim\Lambda AΛ
  2. n i = n − r ( λ i E − A ) ⇔ A ∼ Λ ( λ i n_i=n-r(\lambda_iE-A)\Leftrightarrow A\sim\Lambda(\lambda_i ni=nr(λiEA)AΛ(λi n i n_i ni重根 ) ) )

2.2.充分条件

  1. A A A是实对称矩阵 ⇒ A ∼ Λ \Rightarrow A\sim\Lambda AΛ
    • A A A实对称 { λ 1 ≠ λ 2 ⇒ ξ 1 ⊥ ξ 2 λ 1 = λ 2 ⇒ ξ 1 , ξ 2 线性无关 \begin{cases}\lambda_1\ne\lambda_2\Rightarrow\xi_1\perp\xi_2\\\lambda_1=\lambda_2\Rightarrow\xi_1,\xi_2线性无关\end{cases} {λ1=λ2ξ1ξ2λ1=λ2ξ1,ξ2线性无关
  2. A A A n n n个互异特征值 ⇒ A ∼ Λ \Rightarrow A\sim\Lambda AΛ
  3. A 2 − ( k 1 + k 2 ) A + k 1 k 2 E = O A^2-(k_1+k_2)A+k_1k_2E=O A2(k1+k2)A+k1k2E=O k 1 ≠ k 2 ⇒ A ∼ Λ k_1\ne k_2\Rightarrow A\sim\Lambda k1=k2AΛ
    • A 2 = A , A 2 = E A^2=A,A^2=E A2=A,A2=E
  4. r ( A ) = 1 r(A)=1 r(A)=1 t r ( A ) ≠ 0 ⇒ A ∼ Λ tr(A)\ne0\Rightarrow A\sim\Lambda tr(A)=0AΛ

2.3.必要条件

  • A ∼ Λ ⇒ r ( A ) = A\sim\Lambda\Rightarrow r(A)= AΛr(A)=非零特征值的个数(重根按重数算)
    • r ( A ) = r ( P − 1 A P ) = r ( Λ ) r(A)=r(P^{-1}AP)=r(\Lambda) r(A)=r(P1AP)=r(Λ)

2.4.否定条件

  1. A ≠ O , A k = O A\ne O,A^k=O A=O,Ak=O( k k k为大于1的整数) ⇒ A \Rightarrow A A不可相似对角化
    • 命题中出现 [ 0 0 1 0 0 0 0 0 0 ] , [ 0 1 1 0 0 1 0 0 0 ] \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix},\begin{bmatrix}0&1&1\\0&0&1\\0&0&0\end{bmatrix} 000000100 , 000100110 等,可判别出不可相似对角化
  2. A A A的特征值全为 k k k A ≠ k E ⇒ A A\ne kE\Rightarrow A A=kEA不可相似对角化
    • 命题中若出现 [ 1 0 1 0 1 0 0 0 1 ] , [ 2 0 0 1 2 0 0 0 2 ] \begin{bmatrix}1&0&1\\0&1&0\\0&0&1\end{bmatrix},\begin{bmatrix}2&0&0\\1&2&0\\0&0&2\end{bmatrix} 100010101 , 210020002 等,可判别出不可相似对角化

3.相似( A ∼ B A\sim B AB)

A , B A,B A,B都是 n n n阶矩阵,若存在 n n n阶可逆矩阵 P P P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则称矩阵 A A A相似于 B B B,记作 A ∼ B A\sim B AB.

  • A A A可逆 ⇒ A B ∼ B A \Rightarrow AB\sim BA ABBA

3.1.性质

A ∼ B ⇒ { ① ∣ A ∣ = ∣ B ∣ ② r ( A ) = r ( B ) ③ t r ( A ) = t r ( B ) ④ λ A = λ B , ∣ λ E − A ∣ = ∣ λ E − B ∣ ⑤属于 λ A 的线性无关的特征向量的个数等于属于 λ B 的线性无关的特征向量的个数 A\sim B\Rightarrow\begin{cases}①|A|=|B|\\②r(A)=r(B)\\③tr(A)=tr(B)\\④\lambda_A=\lambda_B,|\lambda E-A|=|\lambda E-B|\\⑤属于\lambda_A的线性无关的特征向量的个数等于属于\lambda_B的线性无关的特征向量的个数\end{cases} AB ①∣A=Br(A)=r(B)tr(A)=tr(B)λA=λB,λEA=λEB属于λA的线性无关的特征向量的个数等于属于λB的线性无关的特征向量的个数

3.2.重要结论

  1. A ∼ B ⇒ { A T ∼ B T A ∗ ∼ B ∗ A − 1 ∼ B − 1 ( A 可逆 ) A m ∼ B m f ( A ) ∼ f ( B ) A\sim B\Rightarrow\begin{cases}A^T\sim B^T\\A^*\sim B^*\\A^{-1}\sim B^{-1}(A可逆)\\A^m\sim B^m\\f(A)\sim f(B)\end{cases} AB ATBTABA1B1(A可逆)AmBmf(A)f(B)
    • P − 1 A P = B P^{-1}AP=B P1AP=B且当 A A A可逆时,记 L ( A ) = a f ( A ) ± b A − 1 ± c A ∗ ⇒ P − 1 L ( A ) P = L ( B ) , L(A)=af(A)\pm bA^{-1}\pm cA^*\Rightarrow P^{-1}L(A)P=L(B), L(A)=af(A)±bA1±cAP1L(A)P=L(B), L ( A ) ∼ L ( B ) L(A)\sim L(B) L(A)L(B)
  2. A ∼ B , B ∼ Λ ⇒ A ∼ Λ A\sim B,B\sim\Lambda\Rightarrow A\sim\Lambda AB,BΛAΛ
  3. A ∼ Λ , B ∼ Λ ⇒ A ∼ B A\sim\Lambda,B\sim\Lambda\Rightarrow A\sim B AΛ,BΛAB
  4. A ∼ C , B ∼ D ⇒ [ A O O B ] ∼ [ C O O D ] A\sim C,B\sim D\Rightarrow\begin{bmatrix}A&O\\O&B\end{bmatrix}\sim\begin{bmatrix}C&O\\O&D\end{bmatrix} AC,BD[AOOB][COOD]

4.实对称矩阵

A A A为实对称矩阵,则

  1. 特征值均为实数,特征向量均为实向量
  2. 不同特征值对应的特征向量正交( λ 1 ≠ λ 2 ⇒ ξ 1 ⊥ ξ 2 ⇒ ( ξ 1 , ξ 2 ) = 0 \lambda_1\ne\lambda_2\Rightarrow\xi_1\perp\xi_2\Rightarrow(\xi_1,\xi_2)=0 λ1=λ2ξ1ξ2(ξ1,ξ2)=0
  3. 可用正交矩阵相似对角化(存在正交矩阵 Q Q Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^TAQ=\Lambda Q1AQ=QTAQ=Λ
  4. A A A n n n阶实对称矩阵 ⇔ A \Leftrightarrow A A n n n个正交的特征向量
  5. A A A为实对称矩阵 ⇒ A ∗ \Rightarrow A^* A为实对称矩阵

5.正交矩阵

  1. A A A为正交矩阵,则

    A T A = E { ⇔ A − 1 = A T ⇔ A 由规范正交基组成 ( 组成 A 的每一行 ( 列 ) 均为两两正交的单位向量 ) ⇔ A T 是正交矩阵 ⇔ A − 1 是正交矩阵 ⇔ A ∗ 是正交矩阵 ⇔ − A 是正交矩阵 A^TA=E\begin{cases}\Leftrightarrow A^{-1}=A^T\\\Leftrightarrow A由规范正交基组成(组成A的每一行(列)均为两两正交的单位向量)\\\Leftrightarrow A^T是正交矩阵\\\Leftrightarrow A^{-1}是正交矩阵\\\Leftrightarrow A^*是正交矩阵\\\Leftrightarrow -A是正交矩阵\end{cases} ATA=E A1=ATA由规范正交基组成(组成A的每一行()均为两两正交的单位向量)AT是正交矩阵A1是正交矩阵A是正交矩阵A是正交矩阵

  2. A , B A,B A,B为同阶正交矩阵,则 A B AB AB为正交矩阵, A + B A+B A+B不一定为正交矩阵

  3. A A A为正交矩阵,则其实特征值的取值范围为 { − 1 , 1 } \{-1,1\} {1,1}

  • n n n阶实对称矩阵 A A A属于特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn的单位正交特征向量 ξ 1 , ξ 2 , ⋯   , ξ n \xi_1,\xi_2,\cdots,\xi_n ξ1,ξ2,,ξn,则 A = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T + ⋯ + λ n ξ n ξ n T A=\lambda_1\xi_1\xi_1^T+\lambda_2\xi_2\xi_2^T+\cdots+\lambda_n\xi_n\xi_n^T A=λ1ξ1ξ1T+λ2ξ2ξ2T++λnξnξnT

    • 证:令 Q = [ ξ 1 , ξ 2 , ⋯   , ξ n ] Q=[\xi_1,\xi_2,\cdots,\xi_n] Q=[ξ1,ξ2,,ξn],有 Q T A Q = Λ Q^TAQ=\Lambda QTAQ=Λ,即
      A = Q Λ Q T = [ ξ 1 , ξ 2 , ⋯   , ξ n ] [ λ 1 λ 2 ⋱ λ n ] [ ξ 1 T ξ 2 T ⋮ ξ n T ] = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T + ⋯ + λ n ξ n ξ n T A=Q\Lambda Q^T=[\xi_1,\xi_2,\cdots,\xi_n]\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&\ddots&\\&&&\lambda_n\end{bmatrix}\begin{bmatrix}\xi_1^T\\\xi_2^T\\\vdots\\\xi_n^T\end{bmatrix}=\lambda_1\xi_1\xi_1^T+\lambda_2\xi_2\xi_2^T+\cdots+\lambda_n\xi_n\xi_n^T A=QΛQT=[ξ1,ξ2,,ξn] λ1λ2λn ξ1Tξ2TξnT =λ1ξ1ξ1T+λ2ξ2ξ2T++λnξnξnT
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值