【考研数学一·线性代数(5)】特征值与特征向量

文章详细阐述了矩阵的特征值和特征向量的概念,包括它们的定义、性质以及如何通过特征向量命题和矩阵方程命题来理解和计算。文章指出实对称矩阵的特征值皆为实数,可以被正交矩阵对角化,并且正交矩阵的特性。此外,文章还探讨了相似对角化的问题,给出充分必要条件以及正交矩阵的相关性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.特征值与特征向量

1.1.定义

A A A n n n阶矩阵, λ \lambda λ是一个数,若存在 n n n非零列向量 ξ \xi ξ,使得 A ξ = λ ξ A\xi=\lambda\xi Aξ=λξ,则称 λ \lambda λ A A A的特征值, ξ \xi ξ A A A的对应于特征值 λ \lambda λ的特征向量.

1.2.用特征值命题

  1. λ 0 \lambda_0 λ0 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ = 0 \Leftrightarrow|\lambda_0E-A|=0 λ0EA=0

    λ 0 \lambda_0 λ0不是 A A A的特征值 ⇔ ∣ λ 0 E − A ∣ ≠ 0 \Leftrightarrow|\lambda_0E-A|\ne0 λ0EA=0

  2. A = ( a i j ) n × n , λ i ( i = 1 , 2 , ⋯   , n ) A=(a_{ij})_{n\times n},\lambda_i(i=1,2,\cdots,n) A=(aij)n×n,λi(i=1,2,,n) A A A的特征值 ⇒ { ∑ i = 1 n λ i = ∑ i = 1 n a i i = t r ( A ) ∏ i = 1 n λ i = ∣ A ∣ \Rightarrow\begin{cases}\sum\limits_{i=1}^n\lambda_i=\sum\limits_{i=1}^na_{ii}=tr(A)\\\prod\limits_{i=1}^n\lambda_i=|A|\end{cases} i=1nλi=i=1naii=tr(A)i=1nλi=A

    注:上、下三角矩阵与对角矩阵的特征值就是对角元素.

  3. 重要结论

    矩阵 特征值 对应的特征向量
    A A A λ \lambda λ ξ \xi ξ
    k A kA kA k λ k\lambda ξ \xi ξ
    A k A^k Ak λ k \lambda^k λk ξ \xi ξ
    f ( A ) f(A) f(A) f ( λ ) f(\lambda) f(λ) ξ \xi ξ
    A − 1 A^{-1} A1 1 λ \frac{1}{\lambda} λ1 ξ \xi ξ
    P − 1 A P P^{-1}AP P1AP λ \lambda λ P − 1 ξ P^{-1}\xi P1ξ
    P − 1 f ( A ) P P^{-1}f(A)P P1f(A)P f ( λ ) f(\lambda) f(λ) P − 1 ξ P^{-1}\xi P1ξ
    • A T A^T AT的特征值与 A A A相同,但特征向量不再是 ξ \xi ξ.
    • A T A^T AT A A A属于不同特征值的特征向量正交.
    • f ( x ) f(x) f(x)为多项式,若矩阵 A A A满足 f ( A ) = O f(A)=O f(A)=O λ \lambda λ A A A的任一特征值,则 λ \lambda λ满足 f ( λ ) = 0 f(\lambda)=0 f(λ)=0.(解得的 λ \lambda λ只是范围,不一定是特征值)

1.3.用特征向量命题

  1. ξ ( ≠ 0 ) \xi(\ne0) ξ(=0) A A A的属于 λ 0 \lambda_0 λ0的特征向量 ⇔ ξ \Leftrightarrow\xi ξ ( λ 0 E − A ) x = 0 (\lambda_0E-A)x=0 (λ0EA)x=0的非零解

  2. 重要结论

    • k k k重特征值 λ \lambda λ至多只有 k k k个线性无关的特征向量.

    • ξ 1 , ξ 2 \xi_1,\xi_2 ξ1,ξ2 A A A的属于不同特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的特征向量 ⇒ ξ 1 , ξ 2 \Rightarrow\xi_1,\xi_2 ξ1,ξ2线性无关

      { λ 1 ≠ λ 2 ⇒ ξ 1 , ξ 2 线性无关 λ 1 = λ 2 ⇒ ξ 1 , ξ 2 可能 { 线性相关 线性无关 \begin{cases}\lambda_1\ne\lambda_2\Rightarrow\xi_1,\xi_2线性无关\\\lambda_1=\lambda_2\Rightarrow\xi_1,\xi_2可能\begin{cases}线性相关\\线性无关\end{cases}\end{cases} λ1=λ2ξ1,ξ2线性无关λ1=λ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值